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INTRODUCTION 

This document constitutes the final report for Phase If of 

the Six Component Robotic Force-Torque Sensor, Contract No. NAS1- 

17997 sponsored by the National Aeronautics and Space 

Administration under the Small Business Innovation Research 

(SBIR) Program. The objective of this two-year phase of the 

project w a s  to design, fabricate, and evaluate a prototype force- 

torque sensor system. 

The first part of this document provides background 

information taken from the Phase I1 proposal. The remainder 

covers the research methods and results, and conclusions. 
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BACKGROUND 

I n t  roduc t i on 

NASA has the  r e s p o n s i b i l i t y  o f  deploying, operating and maintaining 

a v a r i e t y  o f  space missions. 

manned space f l i g h t s ,  i t  i s  desirable t o  perform as many o f  the necessary 

program funct ions as possible by te leoperator con t ro l  o f  space-based 
r o b o t i c  systems. 
evaluated fo r  enabling an unmanned space vehic le  t o  perform maintenance and 

r e p a i r  duties. 
i n d u s t r i a l  robots i n  several respects. The primary requirement i s  t h a t  t he  
e n t i r e  system'must be very f l e x i b l e  and adaptable. 
requ i re  a highly structured work environment where the p o s i t i o n  o f  objects 
i s  p rec i se l y  known. 
They may be l i g h t  and f r a g i l e ,  and t h e i r  exact pos i t i ons  w i l l  be unknown. 
I n i t i a l l y ,  ROSS w i l l  requi re  d i r e c t  human contro l ,  but  i t  also must have 
on-board i n te l l i gence  t o  make some decisions independently o f  the operator. 
This i s  mandatory t o  reduce operator f a t i q u e  and avoid contro l  problems 
due t o  propagation delays i n  communication l i n k s .  
should be able t o  con t ro l  the fo rce  w i t h  which i t  i s  grasping an object  
and should be able t o  avoid c o l l i s i o n s ,  e tc .  wi thout te leoperator i n t e r -  
vent i on. 

Vis ion systems are the basic element o f  the required sensory modal- 
i t i e s ,  but  they cannot provide a l l  the necessary information. 

dimensional o r i en ta t i on  and alignment are d i f f i c u l t  t o  obta in  from video 
cameras, and a t  times the robot i t s e l f  o r  pa r t s  o f  the spacecraft may 
obscure vision. 

t i o n  and react ion forces and torques w i l l  a lso be necessary. 
p a r t  contact operations, smal 1 e r ro rs  i n  re1 a t i  ve p o s i t i o n  o r  angul ar 
o r i e n t a t i o n  can produce very large forces, preventing successful completion 
of the task and sometimes causing damage t o  the parts, f i x t u r e s  o r  the 
robot. However, these same forces t h a t  tend t o  impede the task can be 
e a s i l y  detected and measured with sensors. 

forces and workpiece p o s i t i o n  e r ro rs  i s  known, t h i s  fo rce  informat ion can 

be ef fect ive ly  used fo r  adaptive contro l .  

Because o f  the expense and complexity o f  

The Remote Orb i ta l  Servic ing System (ROSS) i s  being 

The robo t i c  servicer k i t  p o r t i o n  o f  ROSS w i l l  d i f f e r  from 

I n d u s t r i a l  robots 

I n  space, few objects w i l l  be o f  the same configuration. 

For example, the robot  

Exact three- 

Therefore, multisensory inputs  inc lud ing t a c t i l e  informa- 
I n  r i g i d -  

I f  the re la t i onsh ip  between the 

c 



With funding from a National Science Foundation SBIR grant, we have 
demonstrated the technical  f e a s i b i l i t y  o f  a t a c t i l e  sensor having high 

s p a t i a l  reso lu t i on  and normal force s e n s i t i v i t y .  
t h i s  t a c t i l e  sensor, but  cu r ren t l y  i t  lacks the a b i l i t y  t o  measure shear 
forces and torques. This document repor ts  on an approach t o  the design o f  
a smal 1, 1 ight-weight six-component force-torque sensor t h a t  can operate i n  
conjunct ion w i t h t h e  t a c t i l e  sensor t o  g ive a complete, in tegrated sensory 

device t h a t  can be placed on the grasping surfaces o f  the end e f fec to r .  

Both o f  these sensors are based upon u l t rason ic  pulse-echo ranging 

techniques. 
meric pad used as the gr ipp ing surface, and the force-torque sensor 
measures the displacement o f  an array o f  targets  constrained by an elasto- 

We w i l l  continue t o  r e f i n e  

The t a c t i l e  system images the surface o f  a compliant e lasto- 

meric pad t h a t  i s  deformed by react ion forces and torques. 

Robotic Force-Torque -- Sensors 

Most multi-dimensional force-torque sensors are equipped w i t h  s t r a i n  

gauges mounted on a somewhat complex mechanical structure.  
pos i t i on ing  of the s t r a i n  gauges are ca lcu lated so as t o  uncouple as much 

as possible the forces and the torques applied on the robo t i c  gr ipper 
by having each sensing element, o r  each p a i r  o f  them, measure one element 

of t he  stress tensor appl ied t o  the sensor. 
t h e o r e t i c a l l y  s i m p l i f i e s  the t ransfer matr ix  between the forces measured 
by the  sensing elements and the stress tensor. 

An example of "uncoupled gauging" i s  the six-dimensional force- 

torque sensor o f  J.P.L. [Bejczy, 19803 having a maltese cross conf ig-  

u r a t i o n  w i t h  semi-conductor s t r a i n  gauges mounted on the fou r  de f l ec t i on  
bars o f  the cross. 
d e f l e c t i o n  bars, g i v ing  a t o t a l  o f  16 gauges. 

sides o f  a de f l ec t i on  bar are wired together t o  provide a s ing le  reading 
r e f l e c t i n g  the  d i f ferences i n  s t r a i n  l e v e l s  on opposite sides o f  the 
bar. The dynamic range of t h i s  sensor i s  0.5 t o  300 Newtons. 

C19831. 

known coupling between the d i f f e r e n t  elements o f  the stress tensor. 
sensor s t ructure consists o f  two pa ra l l e l  d isks jo ined by s i x  a r t i c u l a t e d  

The design and 

This mechanical uncoupling 

There i s  one gauge on each side o f  each o f  the fou r  

The gauges on opposite 

A coupled gauged device has been developed by G a i l l e t  and Reboulet 

The design methodology o f  t h i s  sensor i s  based upon strong but 
The 
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rods each carry ing a measurement device (of undisclosed type). The react ion 
forces on the a r t i c u l a t i o n s  r e s u l t i n g  from app l i ca t i on  o f  a fo rce  o r  torque 

on the upper p l a t e  are or iented i n  the d i r e c t i o n  o f  t he  rods and measured 

by t h e i r  sensing elements. Overstressing o f  t he  sensing elements i s  

avoided by the i nc lus ion  of a compliant member s i m i l a r  t o  t h a t  used i n  

remote center compliance (RCC) devices. This sensor has a 15 gm fo rce  
s e n s i t i v i t y  i n  a l l  d i rec t i ons  over a 10 kg range. 

i n  the development o f  a f i v e - a x i s  t a c t i l e  post ion sensor. 
measurement axes def ine the p o s i t i o n  o f  the t a r g e t  i n  the robo t ' s  X, Y, and 
Z axes whi le  the other two measurements def ine the  ta rge t  plane's o r i e n t a t i o n  
w i t h  respect t o  the Z ax is  of the robot as measured i n  the X and Y planes. 
Thi s device uses movable p ins p ro t rud i  ng perpendi cu l  a r l y  from the bottom of 
the sensor. 
a canti levered spr ing having f u l l - b r i d g e  s t r a i n  gauges mounted on them near 
the support end. 
l a t e r a l l y .  
opposed f l a t s  instrumented w i t h  f u l l  br idge s t r a i n  gauges so t h a t  the 
center probe i s  two independent cant i levered rods capable only o f  or tho- 
gonal def lect ion.  The sensor i s  58 mn i n  diameter, 40 mn high, weighing 

600 gm w i t h  a range o f  i6.4,  k0.0025 mn i n  the X, Y, and Z axes and 

*3.0, *0.01 degrees. 

One device i s  an instrumented RCC containing three elastomer pads w i th  

three LED-dual photodiode p a i r s  measuring the displacement o f  the RCC 

[Seltzer, 19821. This i s  a nul l -seeking device w i t h  sensing i n  the X ,  

Y, and e t  dimensions w i t h  t o t a l  displacements o f  about 2.5 mn. 

Lord sensor i s  a touch sensor array having 8 x 12 sensing elements on 2.5 mm 

centers. This device i s  44 mn long by 29 I" wide and 16 mn t h i ck .  
g i v i n g  the force d i s t r i b u t i o n  appl ied t o  the surface, i t  i s  also purported 
t o  measure the magnitude, d i rec t i on ,  and l o c a t i o n  o f  the t o t a l  loading 
vector r e s u l t i n g  from pressing on an object .  L i t t l e  informat ion i s  given 
on the performance o f  t h i s  device and 
I n  fac t ,  Lord Corporation personnel stated t h a t  they had y e t  t o  determine 
the  sensing technology t o  be used. 

A d i f f e r e n t  approach t o  sensor design has been taken by Benjamin C19831 
Three o f  the f i v e  

The pe r iphe ra l l y  placed p ins move a t o t a l  o f  2.5 mn against 

The centra l  p i n  i s  f r e e  t o  move a x i a l l y  but constrained 
This p i n  mates w i t h  a rod w i t h  fou r  f l a t s  ground on i t  w i t h  

The Lord Corporation makes two devices f o r  mu l t i - ax i s  fo rce  sensing. 

The second 

Besides 

the sensing technology i s  undisclosed. 



The f i r s t  f ou r  devices are bulky, heavy s t ructures t h a t  can reduce 

r o b o t i c  payload and i n t e r f e r e  during assembly operations. 

wrist-mounted sensors experience i n e r t i a l  loadings due t o  gr ipper mass 

and are prone t o  v i b r a t i o n  s e n s i t i v i t y  and mechanical resonance problems. 

These problems can be exacerbated by the  use o f  f l e x i b l e  or " l imber" 

manipulators. 
previous models were expensive and complex w i t h  the i nd i v idua l  sensing 

elements consis t ing o f  l i gh t -em i t t i ng  diode and photo-detector p a i r s  

w i t h  a shutter mechanism modulating o p t i c a l  i n t e n s i t y  w i th  appl ied force. 

Although smaller than the previously mentioned devices, i t  i s  s t i l l  about 

50 times the volume o f  our u l t rasonic  six-component force-torque sensor. 
Our sensor i s  a small, low mass, rugged device w i t h  high overload c a p a b i l i t y  

Moreover, 

L i t t l e  i s  known about the new Lord t a c t i l e  sensor. However, 

t h a t  i s  mounted on the grasping surface o f  the end e f f e c t o r  and compatible 
w i t h  Bonnevi l le S c i e n t i f i c ' s  high reso lu t i on  t a c t i l e  sensor arrays. 

U1 t rasonic  Pul se-Echo Rand nq 

Our force-torque measuring technique i s  based upon using u l t rason ic  

pulse-echo ranging t o  determine the  p o s i t i o n  o f  u l t rason ic  r e f l e c t o r s  
attached t o  a metal o r  ceramic cover p la te.  
p l a t e  i s  bonded t o  an elastomeric pad whose bottom surface i s  anchored 
t o  a substrate attached t o  the end e f f e c t o r  gr ipp ing surface. Loading 

o f  the pad, through i t s  cover plate, produces small changes i n  r e f l e c t o r  
pos i t i on .  

u l t rason ic  pulse t o  t raverse the path i n  the e l a s t i c  pad and r e t u r n  t o  the 

transducer. From t h i s  t ime- interval  measurement, knowledge o f  the speed 

o f  sound i n  the pad, and knowledge o f  the pad's spr ing constant (appropriate 

f o r  the type o f  loading) the force and torque deforming the pad can be 

ca l  cu l  ated. 
Two basic p r i n c i p l e s  are involved i n  pulse-echo distance measurement. 

F i r s t ,  the speed o f  sound, C, i n  the medium (e.g. e l a s t i c  pad) i s  known so 
t h a t  the distance, d, can be determined from the  two-way t rave l  time, t, 

by d = 1/2 c t .  Second, the r e f l e c t i n g  i n te r face  must r e f l e c t  t he  u l t r a -  
sonic pulse. 

c o e f f i c i e n t  which i s  a funct ion of the spec i f i c  acoustic impedances o f  

the two media on e i t h e r  side o f  t he  in ter face.  

The underside o f  the cover 

Ref lector  p o s i t i o n  i s  determined from the t ime i t  takes an 

How wel l  an in ter face r e f l e c t s  i s  given by the r e f l e c t i o n  

For an e l a s t i c  pad made 
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out  o f  s i l i cone  rubber and a steel  r e f l e c t o r  surface the  r e f l e c t i o n  

c o e f f i c i e n t  i s  about 96%. 

I n  order t o  accurately and consis tent ly  measure the small distance 

changes produced by the applied loading, the u l t rason ic  transducer must 
have high mechanical dampening t o  reduce r i n g i n g  and increase bandwidth 

wi thout t he  need f o r  matching o r  mismatching layers, and have adequate 
s e n s i t i v i t y  at  the h igh frequencies necessary t o  resolve small distances. 

For these reasons as we l l  as the advantages i t  o f f e r s  i n  sensor fab r i ca -  

t i o n  and i t s  low cost, polyvinyl idene f l o u r i d e  (PVDF) was used f o r  the 

transducer materi a1 . 

Polyvinyl idene - F lou r ide  (PVDF) U1 trasonic Transducers 

Polyvinyl idene F lou r ide  (PVDF) i s  a t h i n - f i l m  polymer mater ia l  t h a t  

was o r i g i n a l l y  manufactured f o r  use as a p ro tec t i ve  packaging mater ia l .  

I n  1969 [Sussner, 19793 Kawai i n  Japan demonstrated t h a t  stretched and 
poled f i l m s  of PVDF are f i v e  t o  ten  times more p iezoe lec t r i c  than 
c r y s t a l  1 i n e  quartz. 

Under a recent National Science Foundation grant we have invest igated 

the  use o f  PVOF transducer arrays f o r  accurately measuring small distances 
i n  elastomeric mater ia ls  using pulse-echo ranging. 

study showed tha t  2 8 ~ m  t h i c k  PVDF w i l l  be h igh l y  su i ted f o r  the force- 

torque sensors. 
elements, when exc i ted w i t h  5.0 v pulses, produced echo signals of 5 mv 
f o r  a 9.5 mn s i l i cone  rubber path length. 
s ing le  cyc le  o f  approximately sinusoidal shape 600 ns wide w i t h  no d i s -  
ce rn ib le  r inging. 

can be achieved w i t h  r e l a t i v e l y  simple e lec t ron i c  c i r c u i t s .  
e x c i t a t i o n  voltage the echo amplitude i s ,  t h e o r e t i c a l l y ,  independent o f  
transducer area. P rac t i ca l l y ,  a s ize l i m i t  i s  reached due t o  a m p l i f i e r  
i npu t  impedance loading the small, capaci t ive transducer. 

The r e s u l t s  o f  t h a t  

Speci f ic  f i nd ings  were t h a t  8 mm square transducer 

The echo signals were a 

Since the signals were large, b ipo la r  pulses, detect ion 

For the same 

Elastomeric Pad Character is t ics  

Acoustic and pre l iminary mechanical character izat ion o f  s i l i c o n e  and 
natura l  rubbers, covering a range o f  durometers has been ca r r i ed  out  

under the previously mentioned National Science Foundation grant. The 



speed o f  sound i n  these mater ia ls i s  constant w i t h  elastomer compression 

(i.e., w i t h  the mater ia l  free t o  expand l a t e r a l l y  whi le  being compressed) 

and the acoustic at tenuat ion i s  acceptably small (e.g. 3.4dB/cm f o r  
s i l i c o n e  rubber a t  2.0MHz). 
p l e  resul ted i n  a l i n e a r  force-compression re la t i onsh ip  over the range 

o f  5 t o  600 gm and 50% compression o f  the pad. 
i t y  a t  both ends o f  the force range were l i k e l y  due t o  inadequacies 

i n  the measuring apparatus. 
Dynamic compression t e s t s  were made w i t h  an Ins t ron  mater ia l  t e s t i n g  

machine. Figure 1 shows the resul ts  o f  these t e s t s  f o r  a s i l i c o n e  rubber 
sample and a natural  rubber sample. 

pression v a r i e s l i n e a r l y w i t h  force but dur ing fo rce  removal the hystere- 
s i s  i s  apparent, especia l ly  f o r  t h e  s i l i c o n e  rubber sample. 
hysteresis w i l l  l i m i t  the accuracy o f  our sensor. 
working w i th  two rubber fab r i ca t i on  companies t o  develop formulations w i t h  
acceptable l e v e l s  o f  hysteresis. 

o f  t he  s i x  rubber types tested. 

Stat ic  compression o f  a s i l i c o n e  rubber sam- 

Deviations from l i n e a r -  

During fo rce  appl icat ion the com- 

This 

We are cu r ren t l y  

No compression set was evident i n  any 

Technical Amroach 

Phase I o f  t h i s  p ro jec t  was devoted t o  proving the f e a s i b i l i t y  o f  t he  

proposed force-torque sensor concept. 
requirements f o r  sensor operation i n  space (e.g. heat sinking, heat 
shielding, o r  the need for  on-sensor heat production, along w i t h  the 

out-gassing cha rac te r i s t i cs  o f  the polymers used f o r  adhesives and 

elastomers, etc.) we used m a t e r i a l s  t h a t  were r e a d i l y  avai lab le and, 

when appropriate, e a s i l y  shaped by conventional means. 
were conducted w i t h  simple sensor conf igurat ions t o  i d e n t i f y  fundamental 
l i m i t a t i o n s  o f  the technique that  were not o r i g i n a l l y  apparent. 

A1 though we are sens i t i ve  t o  the 

Basic experiments 

I n  

Phase I 1  complete, funct ional  sensors w i l l  be constructed w i t h  mater ia ls  
su i tab le  f o r  space appl icat ion,  integrated w i t h  a dedicated micro- 
processor, and extensively eval uated. 

ducer conf igurat ion t h a t  i s  a compromise between ease o f  f a b r i c a t i o n  and 

the  degree o f  coupling between the d i f f e r e n t  components o f  the appl ied 

s t ress tensor. 

ducers i n  a pa t te rn  t h a t  weakens coupling, and 2) using redundant 

Our force-torque sensing technique u t i l i z e s  an u l t rason ic  t rans- 

We chose t o  maximize accuracy by 1) l oca t i ng  the t rans- 
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Figure  1. Dynamic compression and hvsteresis  c h a r a c t e r i s t i c s  o f :  A .  S i l i -  
cone rubber,  RTV-700, compressed a t  0.25 ?/mino B. Natural  rubber, R-45, 
compressed a t  
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transducers so t h a t  f o r  some component measurements can be averaged t o  

improve accuracy. The redundant transducers also s i m p l i f y  computation 

o f  the force-torque components. I n  Phase I we determined how wel l  the 
method can resolve the i nd i v idua l  components i n  the presence o f  others 

and determi 

technique. 
Figure 

the p r i n c i p  

measure the 
movement i s  

ed what fac to rs  establ ish the ove ra l l  accuracy o f  the 

2 shows the basic sensor design t h a t  was invest igated and 

e o f  operation. Ultrasonic pulse-echo ranging i s  used t o  
p o s i t i o n  and o r ien ta t i on  o f  the sensor cover p l a t e  whose 
rest ra ined by a r i n g  o f  elastomeric mater ia l .  The scheme 

shown uses nine transducer elements. Four of them, X5, X6, X7,  and 
X8, are mounted on a planar substrate and measure the degree o f  compres- 

s ion of the elastomeric r i n g  by sending u l t rason ic  pulses through the 
elastomer and receiv ing the echo from the bottom surface o f  the cover 

p la te.  The remaining f ivetransducers X1, X2, X i ,  X j ,  and X4,  are 
mounted on the fou r  sides of a square post mounted i n  the center o f  the 
sensor assembly. 

targets,  T1, T2, T3, and T4 f i x e d  t o  the cover p la te.  
c a v i t y  of the sensor contains a s i l i cone  gel o r  very-low-durometer 
s i  1 icone rubber t o  provide acoustic coup1 i ng between these trasducers 
a'nd targets.  
elastomeric r i n g  character is t ics .  

be measured (except Fz, the normal compression force)  w i l l  produce 

changes i n  pad dimensions on the order of 10%. 
f i r s t - o r d e r  approximation changes i n  pad thickness due t o  shear can be 

neglected as w e l l  as ta rge t  alignment changes due t o  ro ta t i on .  
e r ro rs  introduced by making these assumptions have been determined 

dur ing Phase I. I n  Phase I 1  compensation can be made f o r  some o f  these 
e f f e c t s  by the use o f  appropriate processing algorithms. 

Very small t a rge t  displacements can be accurately measured by pulse- 
echo t r a n s i t  times. 
the lOns pulses from a 100 MHz clock, then f o r  a s i l i c o n e  rubber pad the  
displacement reso lu t i on  i s  5 p m  so t h a t  f o r  a displacement o f  1.0 m, 
displacements could be resolved t o  one p a r t  i n  200. 

vol tage ramp when an echo i s  detected and conversion o f  t h a t  voltage i n t o  

a d i g i t a l  word could g ive 2 ns time reso lu t i on  so t h a t  1.0 mm displace- 

These transducers measure the distance t o  v e r t i c a l  
The i n t e r i o r  

Most o f  the sensor's compliance i s  con t ro l l ed  by the 

The sensor i s  designed so that  the maximum forces and torques t o  

This means t h a t  t o  a 

The 

For example, i f  pulse-echo t i m e s  are measured by counting 

Sampling o f  a 
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ments could be resolved t o  one par t  i n  1000 i f  greater accuracy i s  

required. 

each transducer. 

the tabulated coeff ic ients i n  the desired transducer row by the force 

o r  torque components heading the  columns, and then sumning the factors.  
The minus sign ind icates t h a t  a pos i t i ve  fo rce  o r  torque decreases the 

t r a n s i t  time. For example, the t r a n s i t  t ime change f o r  transducer X 5  i s  

t5 = cFz + dMx. 

where kiis the elastomeric spr ing constant f o r  the appropriate fo rce  o r  

torque component 
sound i n  t h  elastomer. 

Table 1 gives a l l  the contr ibut ions t o  the pulse t r a n s i t  t ime f o r  

The change i n  t r a n s i t  time, t, i s  given by mu l t i p l y ing  

The fo rce  coef f ic ients ,  a through f, are simply 2 (kit) 

( t o  be measured experimental ly) whi le  c i s  the speed o f  

Transducers X 5  and X6 measure elastomer thickness which changes 
p r i m a r i l y  w i th  normal force, Fz, and moment, Mx, which "rocks" the 
cover p l a t e  about the x-axis (see Figure 2). Sim i la r l y ,  X7 and X8 
are p r i m a r i l y  sens i t i ve  t o  F, and M Transducers X1 and X2 measure 
t r a n s l a t i o n  o f  the cover p l a t e  along the x-axis due t o  Fx (which pro- 
duces shear i n  the elastomer) and r o t a t i o n  o f  the cover p l a t e  due t o  
MZ, the moment o r  torque normal t o  t he  cover p la te.  
X3 and X4 respond t o  the y-ax is  t rans la t i on  due t o  F 
Because o f  symnetry, r o t a t i o n  o f  targets T1 through T4 due t o  MZ produce 
a decrease i n  pulse t r a n s i t  t ime regardless o f  the d i r e c t i o n  o f  ro ta t i on .  

Therefore, transducer X3, i s  divided i n t o  two transducers X i  and X i  as 
shown i n  Figure 2. For a pos i t i ve  MZ (producing a counter-clockwise ro ta -  

t i o n  o f  the cover and v e r t i c a l  targets) t a rge t  T3 ro ta tes  so t h a t  i t  i s  
c loser  t o  transducer X i  than X i .  Consequently, the s ign of the di f ference 

i n  t r a n s i t  t ime between transducers X i  and X i  gives the d i r e c t i o n  o f  MZ. 

Table 1. 

torque c o e f f i c i e n t s  and t r a n s i t  time measurements. 
g iven by only two t r a n s i t  t ime measurements i n d i c a t i n g  r e l a t i v e l y  "loose" 
coupling. 
o f  the ca lcu lat ions could be averaged t o  improve accuracy. 

leads (plus a common) have t o  be external ized. 

Y '  

Transducers 
and a lso t o  MZ. 

Y 

Table 2 l i s t s  the so lut ions t o  the t r a n s i t  t ime equations o f  

The fo rce  and torque components are given i n  terms 0.f the force-  
Each component i s  

Both FZ amd MZ are given by two equations so t h a t  the r e s u l t s  

I f  each transducer requires i t s  own e l e c t r i c a l  leads, then nine 
To reduce the number o f  leads 
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TABLE 1 

t 

x1  

x2 

x3 

x4 

x5 

x7 

'6 

'8 

FX F FZ MX M Y /MZI  

a -f 

-a -f 

b -f 

-b -f 

-C d 

-C -d 

-C e 

-C -e 

TABLE 2 

Fz = (-l/2c)(t5 + t s )  I M z l =  (-l/Zf)(t1 + t,) - 
Fz = (-1/2c)(t7 + t8) IM,I= (-1/2f)(t3 + t4) 

sign o f  ti - t: gives direction o f  M, (see text)  



each hor izonta l  transducer could be connected t o  one v e r t i c a l  transducer 

t o  reduce the number of leads t o  f i v e .  Echoes from each o f  the transducer- 

p a i r s  would be i d e n t i f i a b l e  by t h e i r  separation i n  t ime i f  the respect ive 

u l t rason ic  pathlengths d i f f e r  s u f f i c i e n t l y  (e.g. about 1 .O mn). 
s a c r i f i c e  i n  sensor min ia tur izat ion can be tolerated, then i t s  possible t o  

adjust  t a rge t  distance such t h a t  a l l  transudcers can be connected i n  
p a r a l l e l  and each echo separated i n  time. 

shielded lead would e x i t  the sensor. 

determine i f  they were s u f f i c i e n t l y  high t o  a l low the use o f  remotely 
located processing e lect ron ics.  
Phase I 1  we would have t o  invest igate the use o f  on-sensor hybr id  
e lect ron ics f o r  transducer mu1 t i p l e x i n g  and signal  condi t ioning. 

I f  some 

Consequently, only a s ing le  

During Phase I we invest igated the transducer s ignal  l e v e l s  t o  

I f  they were too low, then dur ing 

' 3 ,  



IETHODS AND RESULTS 

- Int roduct ion 

The research ob jec t i ve  o f  the Phase I study was t o  determine the 

f e a s i b i l i t y  o f  the proposed six-component r o b o t i c  force-torque sensing 

t ec hn i que by : 

1. Determining the sui t a b i  1 i ty  of t he  proposed r e f  l e c t o r  
scheme and the e r ro rs  introduced by misalignment and 
ro ta t i on .  

2. Determining the s u i t a b i l i t y  of s i l i c o n e  rubber and natural  
rubber as a multidimensional, l i n e a r  spring. 

3. Evaluating sensor performance under d i f f e r e n t  loadings and 

ance. 
* evaluate ind icated design a1 t e r a t i o n s  t o  improve perform- 

The research i n  Phase I was conducted i n  the three main areas 

l i s t e d  above. 
o f  u l t rasonic  r e f l e c t o r  r o t a t i o n  and misalignment on the u l t rason ic  
echo pul se. We determi ned the degree o f  m i  sal i gnment t h a t  i s permi ss i  b l  e 
before echo zero-crossing t i m e  i s  s i g n i f i c a n t l y  af fected. 
step we measured the e l a s t i c  propert ies o f  s i l i c o n e  rubber i n  compression, 
tension, shear, and t o r s i o n  and determined equivalent spr ing constants 
and t h e i r  range o f  a p p l i c a b i l i t y .  F i n a l l y ,  i n  the t h i r d  step a simple 

prototype sensor was designed and constructed, based upon the  r e s u l t s  
o f  t he  previous experiments and p r e l i m i n a r i l y  evaluated t o  determine i t s  

c a p a b i l i t y  as a force-torque sensor. 

Reflector Alignment Experiments 

The f i r s t  step was devoted t o  determining the e f f e c t s  

I n  the second 

The underside o f  the sensor cover p l a t e  serves as a r e f l e c t o r  

f o r  the four substrate-mounted transducers (X5, X6, X7, and X8 i n  Figure 
2 )  whi le perpendicular tabs attached t o  the bottom surface o f  the cover 
p l a t e  r e f l e c t  the u l t rason ic  pulses from the post-mounted transducers 

(Xl, X2, X3, and X4in Figure 2 ) .  During t r a n s l a t i o n  o f  the cover p l a t e  
(as  occurs wi th any combination o f  appl ied forces - Fx, F 
ref lector-transducer alignment i s  preserved. However, when one o r  more 
torques are appl ied the r e f l e c t i n g  surfaces are ro ta ted  o f f  of perpendicu- 
l a r  alignment thereby af fect ing the u l t rason ic  echo pulse. 
pulse i s  affected i n  two ways. 

and Fz )  
Y '  

The echo 
F i r s t ,  echo amplitude i s  reduced because 



not of the u l t rason ic  energy i s  returned t o  the transducer when the 
i s  no longer perpendicular. And second, the echo pulse becomes 

wider, containing more cycles, as misalignment increases because the 

port ion of the r e f l e c t o r  c loser t o  the transducer r e f l e c t s  energy f i r s t  

ducer i s  the l a s t  t o  r e f l e c t .  
I n  t h i s  Phase I study we have invest igated the  f e a s i b i l i t y  o f  

using zero-crossing detect ion o f  the echo signal  t o  measure pulse t r a n s i t  

time. Zero-crossing detect ion i s  a t t r a c t i v e  because i t  i s  e a s i l y  
implemented and r e l a t i v e l y  independent of echo amplitude. 

p r a c t i c a l  because fo r  al igned r e f l e c t o r s  the echo consists o f  essen t ia l l y  

one c y c l e  o f  approximately sinusoidal shape. This i s  due t o  the inherent 

high dampening ( i .e. broadband) propert ies o f  PVDF transducer f i l m .  

A ser ies of experiments was conducted t o  measure the change i n  
echo zero-crossing t ime w i t h  re f lector  r o t a t i o n  whi le  the distance from 
the transducer surface t o  the center of r o t a t i o n  o f  the r e f l e c t o r  r e -  
mained constant. 

s i s ted  o f  a rectangular piece o f  28pm t h i c k  PVDF (Kynar Piezo F i l m ,  

Pennwalt Corp., King o f  Prussia, P A  1 3.2 mn x 1.6 mn having t i n -  

aluminum electroded surfaces about 80 nmthick.  This was bonded w i t h  a 

cyanoacrylate adhesive t o  a 2.4 mm square brass tube having 0.4 mn wal l  
thickness. 
small thickness so t h a t  i t s  capacitance i s  small compared t o  the PVDF, 
thus al lowing the brass tube t o  serve as a transducer lead. 

th in-wal led tube provides an excel lent  acoustic backing f o r  the t rans- 

ducer i n  t h a t  what l i t t l e  acoustic energy enters the brass w a l l  from 
the back surface o f  the PVDF i s  almost immediately r e f l e c t e d  back from 
the brass-a i r  i n te r face  and i s  quickly attenuated. Consequently, no 
i n t e r f e r r i n g  echoes are produced by the backing. The remaining transducer 

lead consisted o f  a small length o f  # 38 AWG copper magnet w i re  bonded 
t o  the  top PVDF surface w i t h  a conductive epoxy. A braided sh ie ld  o f  a 

short  length o f  2.5 mn diameter coaxial cable was soldered t o  the brass 
tube and the center lead connected t o  the magnet wi re t o  complete the 
transducer assembly. 

E l e c t r i c a l l y ,  the transducer was connected t o  a 0-30 V, 200 ns 
pulser  and video ampl i f ier  having a gain o f  130. Theoutputof  the video 

a m p l i f i e r  was displayed on an osci l loscope f o r  measurement o f  pulse 
t r a n s i t  t ime and echo amplitude and shape. Mechanically, the transducer 

the Por t ion of the r e f l e c t o r  t h a t  has ro ta ted  away from the trans- 

It i s  also 

For these experiments the u l t rason ic  transducer con- 

The cyanoacrylate produces a strong bond having su i tab l y  

The hollow 
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assembly was mounted i n  a f i x t u r e  attached t o  a goniometer t h a t  was 

designed for  x-ray d i f f r a c t i o n  studies. This device can accurately ro -  

t a t e  an object through a precise range of angles and has a ca l i b ra ted  
readout having 0.005' (18 seconds o f  arc)  resolut ion.  

steel  r e f l e c t o r  p l a t e  was f i t t e d  t o  the goniometer so t h a t  the ax i s  

of revolut ion l a y  on the surface o f  the p l a t e  and the transducer assembly 

adjusted t o  be centered 6 mm from the r e f l e c t o r  surface and p a r a l l e l  

t o  i t  ( i.e. the u l t rason ic  r a d i a t i o n  i s  perpendicular t o  the r e f l e c t i n g  

surface). 
s i l i c o n e  rubber t o  conduct the u l t rason ic  pulse. 

shown i n  Figure 3 .  

d i f f e r e n t  r e f  l e c t o r  angles were taken. 
w i t h  the transducer assembly misaligned w i t h  the r e f l e c t o r  by about 6' 
as shown i n  Figure 3. 
and show that zero-crossing t ime o f  the echo pulse i s  constant w i t h i n  

and w i t h i n  *5  ns over about a 7' range when the r e f l e c t o r  o f f s e t  i s  
about 6'. 
distance measurements with r e f l e c t o r s  misaligned by 5 t o  7'. It i s  
ant ic ipated t h a t  t h i s  amount of cover p l a t e  r o t a t i o n  i s  a l l  t h a t  can be 

to le ra ted  i n  a force-torque sensor wi thout introducing s i g n i f i c a n t  

robo t i c  pos i t ion ing e r r o r  due t o  sensor compliance. 

measurement tolerance corresponds t o  an uncer ta in ty  i n  distance of 

*2.5 pm and was chosen a r b i t r a r i l y .  

than t h i s  i s  possible, i t  i s  not l i k e l y  t o  produce greater measurement 
accuracy due t o  other e r r o r  sources. 

A f l a t  s ta in less 

The gap between transducer and r e f l e c t o r  was f i l l e d  w i t h  

This arrangement i s  

Using t h i s  setup measurements of change i n  pulse t r a n s i t  t ime a t  

These measurements were repeated 

These measurements are shown p l o t t e d  i n  Figure 4 

5 ns over about a 5' range o f  r e f l e c t o r  r o t a t i o n  wi thout misalignment 

Consequently, zero-crossing detect ion can provide accurate 

The +5 ns t ime 

Although a t ime reso lu t i on  greater 

2-Axis Torque ( M Z )  Measuring Scheme 

Our proposed methods f o r  measuring the f i v e  force-torque components 
other than MZ are s t r a i g h t  forward and invo lve  simple t r igonometr ic 
re la t ionships between the u l t rason ic  distance measurement and the force 
o r  torque that produces the distance change. However, f o r  measuring MZ 

our proposed scheme (Figure 2 )  involved vert ical ly-mounted u l t rason ic  
transducers t h a t  would measure the change i n  angular o r i e n t a t i o n  o f  

r e f l e c t o r s  mounted t o  the sensor cover p la te.  

d i r e c t i o n  of r o t a t i o n  a double o r  s p l i t  transducer was used. 
I n  order t o  determine the 

With t h i s  



SIDE VIEW 

I I I 

OFFSET 

TOP VIEW 

Figure 3.  Ref lector  Alignment Detail. R, r e f l e c t o r  which ro ta tes  
through e; SR, s i l i cone  rubber; x transducer mounted on 
a square brass tube set i n  support ing rod which may be 
o f f s e t  a t  f i x e d  angles. 
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technique there were questions concerning 1) the ef fects  o f  r e f l e c t o r  
r o t a t i o n  on the echo signal, 2) the s e n s i t i v i t y  o f  the method, and 

3 )  t he  nonlinear re1 at ionship between the t r a n s i t  t ime measurements and 

r o t a t i o n  o f  the cover p l a t e  and, therefore, MZ. 

can be ro ta ted  by a t  l e a s t  5' before simple zero-crossing detect ion o f  
the echo signal becomes inaccurate due t o  changes t o  echo waveform o r  

amp1 i tude. The remaining two questions were answered as we1 1. However, 

f i r s t  a mathematical analysis was conducted on the proposed transducer- 
r e f l e c t o r  geometry which suggested simple changes could be made t o  
improve performance and simpl i fy construction. This modif ied scheme 

el iminates the need f o r  the double transducer and o f f s e t s  a t  l eas t  one 
p a i r  o f  the four vertically-mounted transducers as shown i n  Figure 5. 
Referr ing t o  Figure 5, as the  cover plate,  and therefore, r e f l e c t o r s  
R1 and R2 r o t a t e  clockwise, r e f l e c t o r  R1 r o t a t e s  away from transducer 
X1 so t h a t  pulse t r a n s i t  t i m e  tl increases wh i l e  R2 moves closer t o  
X2 thereby decreasing t2. 

This scheme was tested using the dimensions given i n  Figure 5. 
These dimensions are the same as those used i n  the prototype trans- 

ducer described l a t e r .  F ix tures were made t o  implement t h i s  t rans- 
ducer- ref lector  conf igurat ion on the goniometer. Figure 6 shows the 
r e l a t i o n s h i p  between echo t r a n s i t  t ime and r o t a t i o n  o f  the cover 
p la te .  Negative angular r o t a t i o n  ind icates movement o f  the r e f l e c t o r  
toward the transducer and therefore, a decrease o r  negative change i n  
echo a r r i v a l  time. A t  the v i c i n i t y  o f  0' r o t a t i o n  the slope o f  the 
s t r a i g h t  l i n e  approximating t h i s  re la t i onsh ip  i s  O.OZO/ns. 

change i n  the  d i f f e rence  between the pulse t r a n s i t  t imes f o r  a p a i r  o f  

transducers. Spec i f i ca l l y ,  i n  Figure 5 t h i s  would be the change i n  

the d i f f e r e n t i a l  t r a n s i t  time, t2 - tl r a t h e r  than j u s t  tl o r  t2 as has 
been p l o t t e d  i n  Figure 6. The re la t ionship between t2 - tl and cover 
p l a t e  r o t a t i o n  can be derived f rom the data i n  Figure 6 by r e a l i z i n g  
t h a t  f o r  a cover r o t a t i o n  o f  e t2 - tl i s  the  change i n  echo t ime a t  
e minus the change a t  -e.  For example, f o r  e = 5' t2 - tl = 307 ns 
- (-230 ns) = 537 ns. S im i la r l y ,  f o r  e = -5' t2 - 

i s  shown p l o t t e d  i n  Figure 7 f o r  p o s i t i v e  angular r o t a t i o n  o f  the cover 

The data presented previously i n  Figure 4 showed t h a t  the r e f l e c t o r s  

The proposed method f o r  ca lcu lat ing M involves measuring the z 

= -230 ns - 307 ns = 
This r e l a t i o n s h i p  -537 ns so t h a t  t he  curve i s  symmetrical about e = 0 . 
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Figure 5 .  Modified Torque Measuring Scheme. 
R1, R 2 - =  reflectors; t,, t2 = transit times. 
For prototype sensor: r = 6 . 4  mm, d = 2 . 4  m, h = 1 . 2  mm 

X 1 ,  X2,  X 3 ,  X 4  = tranducers; 
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p la te .  

dimensions used the d i f f e r e n t i a l  t r a n s i t  t ime measurement i s  l i n e a r l y  
r e l a t e d  t o  cover p l a t e  r o t a t i o n  over a *5' range. 

i n  Figure 7 i s  -Q,009°/ns so t h a t  f o r  a +5 ns t ime resolut ion,  the 
angular e r r o r  i s  about t0.05°. 

We conclude that even though the f l a t  r e f l e c t i n g  surfaces behave 

as specular re f lectors ,  t h e i r  performance i s  e n t i r e l y  adequate i n  the 
proposed f orce-torque sensor. Therefore, a1 t e r n a t i  ve ref1 ector forms 
such as spherical surfaces, were n o t  invest igated. 

This,curve i s  q u i t e  l inear up t o  5". Consequently, f o r  the 

The slope o f  the l i n e  

CouDlina Aaent Attenuation 

The proposed fo rce  torque sensor contains a c a v i t y  between the fou r  
u l t rason ic  transducers mounted v e r t i c a l l y  on the  centra l ly - located post 
and t h e i r  respect ive r e f l e c t o r s  attached t o  the  cover p la te.  This 
c a v i t y  must contain a su i tab le  acoustic coupling agent t o  carry  the 
u l t rason ic  pulses. 
wi thout excessive at tenuat ion as wel l  as not  adversely a f f e c t i n g  the 

mechanical propert ies o f  the sensor o r  i t s  response. 

s ide ra t i on  w i l l  be discussed la ter .  The two coupl ing mater ia ls con- 
sidered were s i l i c o n e  o i l  and s i l i cone  gel .  S i l i cone  o i l  would have 
less  e f fec t  on sensor performance but  would be harder t o  keep w i t h i n  
the  cav i ty ,  compared t o  the s i l i cone  gel .  

samples o f  a s i l i c o n e  o i l  and gel. 
sonic transducer was used f o r  these measurements. For reference 

purposes, a 6.4 mm t h i c k  pad o f  s i l i c o n e  rubber (RTV-615, General E l e c t r i c  

Company, Waterford, New York) was coupled t o  the transducer surface 

w i t h  a t h i n  l aye r  o f  grease and the amplitude o f  the echo pulse produced 

a t  the s i  1 i cone rubber-ai r in ter face recorded. 

repeated w i t h  a 6.4 mm t h i c k  layer o f  a s i l i c o n e  gel (Dow Corning 
3-6527 S i l i cone  D i e l e c t r i c  Gel, Dow Corning Corp., Midland, Michigan) 
and w i t h  a wel l  containing a 6.4 mn depth o f  a s i l i c o n e  o i l  (Dow Corning 
200 F lu id ,  5 cs v iscos i ty ,  Dow Corning Corp., Midland Michigan). 
t he  s i l i c o n e  o i l  and gel had about the same attenuat ion which was about 
0.6 times t h a t  o f  the s i l i c o n e  rubber. 
would be a su i tab le  coupling agent on the basis o f  low u l t rason ic  
attenuation. 

The agent must conduct the u l t rason ic  energy 

This l a t t e r  con- 

Acoustic at tenuat ion measurements were made on representative 
A vert ical ly-mounted ceramic u l t r a -  

Thi s procedure was 

Both 

Consequently, e i t h e r  mater ia l  
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S t a t i c  Elastomer Character izat ion 

The success o f  the proposed sensing technique depends upon how 

we1 1 e l  astomers behave as mu1 ti dimensional 1 i near sp r i  ngs . E l  astomer 

compression, tension, shear, and t o r s i o n  cha rac te r i s t i cs  were measured 
under s t a t i c  condi t ions f o r  small displacements and rotat ions.  

surements were made on f l a t  s i l i c o n e  rubber r i n g s  25.4 mm O.D. x 
12.7 mm I .D. x 6.4 mn th ick.  These r i n g s  were cast  using RTV-615 

s i  1 icone rubber t h a t  had previously been degassed and were cured 

overnight at  6OoC. 
o f f  and the  r i n g  bonded (Dapcotac # 3300, A i r c r a f t  Products Co., 
Anaheim, Ca l i f o rn ia )  between two a1 uminum plates.  

then attached t o  various f i x t u r e s  instrumented w i t h  load c e l l s  f o r  
determining the d i f f e r e n t  spr ing constants. 

RTV-615 was chosen as a representat ive sample o f  s i l i c o n e  rubber 
f o r  several reasons. F i r s t ,  i t  was easy t o  work w i t h  being c lea r  and 
having a low v i s c o s i t y  i n  the l i q u i d  s ta te  so t h a t  cast  r i n g s  were 
guaranteed t o  be f r e e  o f  macroscopic gas bubbles. 
durometer rubber having a shore A hardness o f  40 points.  And f i n a l l y ,  
i t  had been characterized by us before i n  compression and found t o  be 

q u i t e  l i n e a r  under s t a t i c  condi t ions (but  q u i t e  hys te re t i c  under l a rge  
def ormat i on 1. 

r i n g  were measured w i t h  a special f i x t u r e  instrumented w i t h  a * 445 N 
range load c e l l  (Model 100-0-CT-8L-FF-2.0-100#, Hardy Scales Co. , 
Ogden, Utah) and mounted on a m i l l i n g  machinetable. Movement o f  
the t a b l e  via i t s  micrometer d r i v e  displaced the rubber r i n g  by 

the same amount and the resu l tan t  f o rce  ( load c e l l  output) was displayed 

on a d i g i t a l  voltmeter having 1 .O IN reso lu t i on  (Model 3460A, Hewlett 
Packard Co., Palo Alto, C a l i f o r n i a ) .  F igure 8 gives the r e s u l t s  of one 

such experiment over a range o f  forces from about 50 N compression t o  
70 N tension. 
Consequently, the spr ing constant f o r  Fz, the normal f o rce  applied t o  
the  sensor cover p l a t e  i s  145 N/mm. 
using higher durometer elastomers, f l a t t e r  r ings,  o r  wider r ings;  
and conversely f o r  lowering the spr ing constant. 

l a t e r a l l y  displace the top surface of the r i n g  r e l a t i v e  t o  the bottom 

Mea- 

A f t e r  removing from the mold, t h e f l a s h i n g  was trimned 

These p la tes  were 

Second, i t  i s  a medium 

The compression-tension cha rac te r i s t i cs  o f  the s i l i c o n e  rubber 

The re la t i onsh ip  i s  l i n e a r  with a slope o f  145 N/mn. 

This constant can be increased by 

The remaining two forces, Fx and F are shear forces t h a t  
Y ’  
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surface. 
a t i o n  produced was determined w i th  the same general set-up used f o r  the 

compression-tension measurements except the forces were applied i n  shear. 

Figure 9 shows the r e s u l t s  of one such t e s t  covering shear forces 

from + 22 N t o  - 40 N. 
tested except a t  the higher fo rce  range where the  curve deviates from 

l i n e a r i t y  l i k e l y  due t o  p a r t i a l  f a i l u r e  o f  the bond between the  rubber 

r i n g  and the aluminum t e s t  p lates.  

the shear spring constant, i s  14.0 N/m which i s  about one-tenth t h a t  

f o r  compression. 
f o rce  s e n s i t i v i t y  i s  about ten times greater than the compressive fo rce  
s e n s i t i v i t y .  This feature could be h igh l y  advantageous i n  many 
applications, For example, w i t h  the force-torque sensor mounted on the 
gr ipp ing surface o f  a robo t i c  o r  manipulator f inger ,  the compressive 
force, Fz, would g ive the gr ipp ing fo rce  which i s  usual ly  moderately large. 
The shear forces, Fx and F could be used as a measure o f  impending 

s l i p  o r  misalignment dur ing a p a r t  i n s e r t i o n  operation. 

case high F, and F 

act ion could be taken sooner. 

cover p l a t e  so t h a t  dur ing appl icat ion o f  these components p a r t  o f  the 
elastomer r i n g  i s  i n  compression and p a r t  i s  i n  tension. 
one would expect the associated torque spr ing constant t o  be l i n e a r  
since the compression-tension cha rac te r i s t i cs  were l i nea r .  
cha rac te r i s t i cs  were measured using appropriate f i x t u r i n g  and the 

goniometer t o  produce h igh ly  accurate angular r o t a t i o n s  and the 445 N 

load c e l l  t o  g ive the resu l tan t  force. (The load c e l l  and d isp lay 

instrumentation had a useful f o rce  reso lu t i on  o f  2 0.044 N.) 
was s impl i f ied by the use o f  two s i l i c o n e  rubber r i n g s  bonded t o  a lever  
arm connected t o  the load c e l l .  The resu l tan t  r i n g  assembly was r i g i d l y  
mounted in ,  and ro ta ted  by, the goniometer. The r e s u l t s  f o r  the - two 
r i n g s  i s  given i n  Figure 10 f o r  a range from + 1.7 N-m t o  - 2.1 N-m. 
Again t h e  re la t i onsh ip  i s  l i n e a r  and the slope o f  the curve f o r  - one 
r i n g  i s  0.14 N-m/ O .  

The remaining force-torque component i s  Mz, the torque t h a t  i s  
perpendicular t o  the sensor cover plate.  

w i t h  t h i s  component we have c a l l e d  the t o r s i o n  spr ing constant since i t  

The spr ing constant r e l a t i n g  t h i s  shear fo rce  t o  the deform- 

The re la t i onsh ip  i s  q u i t e  l i n e a r  over the range 

The slope o f  the l i n e ,  and therefore, 

Consequently, f o r  t h i s  p a r t i c u l a r  geometry the shear 

Y 
I n  e i t h e r  

s e n s i t i v i t y  would be bene f i c ia l  i n  t h a t  co r rec t i ve  
Y 

The t w o  torque components Mx and M l i e  i n  the plane o f  the sensor 

Consequently, 

The torque 

Y 

F i x t u r i n g  

The spr ing constant associated 
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tends t o  r o t a t e  o r  t w i s t  t he  ring. The to rs iona l  cha rac te r i s t i cs  o f  
the  RTV-615 s i  1 icone rubber r i n g  were measured w i t h  the  goniometer 

used t o  r o t a t e  the r i n g  and a * 22 N range load c e l l  (Model BA 5 lb., 
Alphatron, Inc.  , Andover, Massachusetts) t o  measure the  resu l tan t  

torque. These measurements are  shown p l o t t e d  i n  Figure 11. The r e l a t i o n -  
ship i s  again approximately l i nea r  over the  measurement range o f  +0.056 N-m 
t o  - 0.092 N-m. The to rs ion  spring constant i s  0.010 N-m/O which i s  

about an order o f  magnitude less than the  torque spr ing constant 

( f o r  Mx and M 1 f o r  the  pa r t i cu la r  r i n g  geometry used. This d i f f e r e n t i a l  
sensi ti v i  ty  can a1 so be exploited. 

zation. The four spr ing constants are l i s t e d  f o r  RTV-615 s i l i c o n e  
rubber along w i t h  the  l i n e a r  range o f  app l i ca t ion  and the  fo rce  o r  
torque reso lu t i on  corresponding t o  a distance reso lu t i on  o f  f 2.5 pm 

(t 5 ns t r a n s i t  t ime) and angular reso lu t i on  o f  f 0.05'. 

Phase I due t o  t ime l i m i t a t i o n s  and previous f ind ings  t h a t  as a class, 
natura l  rubbers behave more l i n e a r l y  than s i l i c o n e  rubbers. The main 

po ten t i  a1 advantage o f  na tura l  rubber i s  i t s  reduced hysteres is  compared 
t o  s i l i c o n e  rubber. 
was conducted and the r e s u l t s  w i l l  be presented l a t e r .  

Y 

Table 3 summarizes the findings i n  s t a t i c  elastomer character i -  

S t a t i c  na tura l  rubber character izat ion was not  undertaken i n  

- 
Limited dynamic t e s t i n g  o f  these two rubber fam i l i es  

Force-Toraue ComDonent In te rac t ion  

A ba t te ry  o f  t e s t s  were conducted t o  determine whether s i l i c o n e  
rubber could be t rea ted  as a t r u l y  l i nea r ,  i s o t r o p i c  mater ia l  w i th  the 

various force-torque components act ing independently or whether there  

would be in te rac t ion .  For example, would a moderate compressive force, 

F,, change the  slope o f  the  shear cha rac te r i s t i c  so t h a t  the  c a l i b r a t i o n  

fac to r  f o r  F, and F ( i.e. t he  shear spr ing constant)  would be a func t i on  
o f  Fz. 

o f  i n te rac t i ons  since each o f  the s i x  force-torque components could have 
any one o f  t he  remaining f i v e  components reac t  w i t h  it. However, Fx and 
F 

Y 

A t  f i r s t  glance i t  would appear t h a t  there are 30 poss ib le  p a i r s  

along w i t h  Mx and M are analogous ( i .e.  they produce the  same type 
Y Y 
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Figure 11 .  Torsional Character is t ics  o f  a S i l i cone  Rubber Ring: 
RTV-615, 25.4 m O.D. ,  12.7 mn I . D . ,  6.4 mn t h i c k .  
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o f  displacement i n  the rubber except t h e i r  d i r e c t i o n  i s  90' apart)  so 
t h a t  only one o f  these forces and one of these torques needs t o  be 

considered. Consequently, t he  number o f  possible i n te rac t i ons  i s  
reduced t o  4 x 3 o r  12. But h a l f  o f  these are redundant i n  t h a t  i t  

includes pai rs  l i k e  Fx, M, and M,, Fx which have the  same e f fec t .  

Therefore, we tested the s i x  remaining i n te rac t i ons  (Fx - F,, MZ-Fz,, 
M -F , M -M , Fx-M,, and F -M 1. 

Y Z  Y Z  X Y  
These t e s t s  were d i f f i c u l t  and t ime consuming. For each p a i r  one 

component was measured over a range o f  l i n e a r  o r  angular displacements: 
f i r s t  without the second, p o t e n t i a l l y  i n t e r f e r i n g  component; then, the 

second component was applied i n  a ser ies o f  steps using weights e i t h e r  
appl ied d i r e c t l y  t o  produce forces, o r  through leve r  arms t o  produce 
torques. It was extremely d i f f i c u l t  i n  some t e s t s  t o  decouple the 
load c e l l  from d i r e c t  e f f e c t s  o f  the i n t e r f e r i n g  component. 
especia l ly  t r u e  when the i n t e r f e r i n g  component was changed. 

i t  was sometimes necessary t o  uncouple the  load c e l l  and r e a l i g n  i t  t o  

remove spurious loading signals. Since i t  was v i r t u a l l y  impossible t o  

do t h i s  exactly, the fo rce  o r  torquemeasurements were o f t e n  o f f s e t  

s l i g h t l y  each t ime the i n t e r f e r i n g  component was changed. 
t h i s  had l i t t l e  p r a c t i c a l  s ign i f icance i n  t h a t  in ter ference would show 
up as a change i n  slope o f  the c h a r a c t e r i s t i c  ( i .e. spr ing constant) 
and not the in tercept .  

There was no e f f e c t  o f  the i n t e r f e r i n g  component on the  spr ing constant 

over the range tested. 
the to rs ion  cha rac te r i s t i cs  i n  the presence o f  an orthogonal torque, and 

i n  Figure 13 for t o rs ion  i n  the presence o f  shear. 
more offset than these. 

the proposed sensor because the mater ia l  spr ing constants can be t reated 
as indeed constant and independent. 

This was 
A t  such times 

However, 

The resu l t s  o f  a l l  s i x  ser ies o f  experiments were the same. 

Typical r e s u l t s  are shown i n  Figure 12 f o r  

Other curves had 

This r e s u l t  g rea t l y  s i m p l i f i e s  operation o f  

Dynamic Elastomer Character izat ion 

A number of samples, both s i l i c o n e  and natural  rubber, was sub- 
j ec ted  t o  dynamic t e s t i n g  i n  order t o  determine the e f f e c t s  of the r a t e  
o f  f o rce  loading and unloading on hysteresis and the slope (o r  spr ing 
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constant 1 o f  the force-di  spl acement cha rac te r i s t i c .  

iments w i t h  i n t e r f e r i n g  force-torque components showed t h a t  the s i  1 i - 
cone rubbers used were i so t rop i c  mater ia ls  (over the range o f  deformations 

used). 
etc. should not depend upon elastomer or ientat ion.  Consequently, dynam- 

i c  t e s t i n g  was almost e n t i r e l y  l i m i t e d  t o  c y c l i c  compression o f  the 

rubber specimens. One measurement was made w i th  c y c l i c  shearing o f  

the rubber w i th  r e s u l t s  not mater ia l ly  d i f f e r e n t  from those o f  the 

compression tests,  thereby p a r t i a l l y  j u s t i f y i n g  l i m i t i n g  the t e s t s  t o  
compression. Also, no tes ts  were conducted using c y c l i c  torque loads. 
It was f e l t  t h a t  these would provide no new informat ion since torques 
Mx and M apply compression-tension forces t o  the rubber and, therefore, 

would produce the same r e s u l t s  as compression loading. S imi lar ly ,  MZ 
shears the rubber sample c i rcumferent ia l ly  so t h a t  the r e s u l t s  would 
be the same as those f o r  l i n e a r  shear loading. 

A small hor izonta l  m i l l i n g  machine was used as the t e s t  bed f o r  

t he  dynamic elastomer character izat ion studies. 

with a b a l l  bearing assembly mounted o f f - cen te r  t h a t  pressed against 

a metal p l a t e  covering the rubber sample. The e c c e n t r i c i t y  o f  the 
bearing could be changed t o  give d i f f e r e n t  displacements. A second, 
l a rge r  eccentr ic was also mounted on the arbor and used t o  d r i v e  a 

spring-loaded l i n e a r  potentiometer t o  provide an e l e c t r i c a l  signal 
proport ional  t o  displacement. This signal was applied t o  the x-axis 
channel o f  an osci l loscope. A second metal p l a t e  was placed beneath 
the rubber sample and on top o f  the 445 N load c e l l  which was 
mounted on the m i l l  t a b l e  d i r e c t l y  underneath the bearing. I n  t h i s  

fashion, the c y c l i c  compression force on the sample was measured by 

the load c e l l  and displayed on the y-ax is  of the osci l loscope. The 

m i l l i n g  machine was operated a t  three d i f f e ren t  speeds t o  cover a 
range o f  loading rates.  These were 61 RPM (1.02 RPS), 101 RPM 

Previous exper- 

Therefore, t ime dependent e f f e c t s  such as hysteresis, creep, 

Y .  

The arbor was f i t t e d  

(1.68 RPS), and 166 RPM (2.77 RPS).  

A l l  the rubber samples were ring-shaped (25.4 mn O.D. x 
2 I . D .  x 6.4 mn t h i c k )  having a cross sect ional  area o f  3.8 cm 

the  R-45 natural  rubber sample which was a 9.5 mn x 40 mn x 6 
t h i c k  rectangle o f  the same cross sect ional  area. Not enough 

2.7 mn 
except 
4 m n  
R-45 
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rubber was avai lab le t o  fab r i ca te  a r ing.  

c y c l i c a l l y  displaced the  rubber sample 1.27 mn (0.050 in.). I n  each 

case the minimum fo rce  was 111 N (25 lbs.  1 .  
loop the  lowest po in t  on the  curve corresponds t o  a fo rce  o f  111 N. 
The t e s t  resu l ts  are given i n  Figues 14, 15, 16, 17 and 18. 

Figures the v e r t i c a l  ax is  corresponds t o  the  compressive fo rce  w i th  

each centimeter being 44.5 N (10 l bs ) .  

loop i s  1.27 mn (0.050 in . ) .  
w i th  the  upper curve being f o r  increasing force and the  lower curve 

being fo r  decreasing force. Figure 14 i s  f o r  RTV-615 s i l i c o n e  rubber; 

F igure 15 i s  fo r  RTV-3 s i l i c o n e  rubber; Figures 16, 17 and 18 show the  
r e s u l t s  for  natura l  rubbers A, 0, and R-45, respect ive ly .  
The th ree  d i f f e r e n t  curves i n  each F igure correspond t o  the three 
ra tes  as indicated. Table 4 summarizes the  photographic informat ion.  
There was no measurable d i f fe rence between curves taken a t  the  th ree  
d i f f e r e n t  rates. 

t he  maximum t i m e  change i n  fo rce  f o r  the curve taken a t  166 RPM, assuming 
the  fo rce  varies s inusoida l ly .  
the  highest ra te .  The per cent hysteres is  en t r i es  are r a t i o s  between 

the  hysteresis values and fo rce  excursion, expressed as a percentage. 
This series of experiments was repeated w i t h  the same rubber 

samples under the same t e s t  condi t ions except t h a t  each sample was 
only  displaced by 0,090 mn (0.0035 i n ) .  The r e s u l t s  are shown i n  
Figures 19 through 23. 
(2.0 l b . )  and the v e r t i c a l  de f l ec t i on  corresponds t o  22 N ( 5  l b . )  per 
centimeter. Table 5 sumnarizes the  resu l t s .  The l a s t  ent ry  i n  Table 

5 i s  f o r  an RTV-615 s i l i c o n e  rubber r i n g  t h a t  was c y c l i c a l l y  sheared 

( i n  the  plane o f  the r i n g  as happens when Fx and F forces are appl ied) 

2.7 mm (0.11 i n ) .  Figure 24 shows the  hysteres is  loops f o r  t h i s  sheared 
sample taken, from top t o  bottom, a t  61, 101 and 166 RPM. The o f f se t  
f o rce  8.9 N (2.0 l b )  and v e r t i c a l  s e n s i t i v i t y ,  22.2 N (5.0 l b )  per 
la rge  d iv is ion,  i s  the  same as the  previous f i v e  Figures. Again, 
i n  both the low displacement compression curves and the  shear curve, 
there i s  no s i g n i f i c a n t  e f f e c t  o f  cyc le  t ime ( i.e. loading/unloading 
ra te ) .  

The f i r s t  ser ies of t e s t s  

That i s ,  i n  the hysteres is  

I n  these 

The hor izonta l  extent o f  the  

The loop i s  made i n  a clockwise d i r e c t i o n  

The en t r i es  i n  the f o u r t h  column o f  Table 4 are 

The hysteres is  would be a maximum a t  

I n  t h i s  t e s t  the  minimum fo rce  was 8.9 N 

Y 



Figure 14. Large displacement hysteresis loops for Silicone Rubber RTV-615 
at 61, 101, and 166 rpm (top to bottom). 

Figure 15. Large displacement hysteresis loops for Silicone Rubber RTV-J 
at 61, 101, and 166 rpm (top to bottom). 
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Figure 16. Large displacement hysteresis loops for Natural Rubber A 
at 61, 101, and 166 rpm (top to bottom). 
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Figure 17. Large displacement hysteresis loops f o r  Natural Rubber B 
at 61, 101, and 166 rpm (top to bottom). 
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Figure 18. Large displacement hysteresis loops for Natural Rubber R-45 
at 61, 101, and 166 rpm (top to bottom). 
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i 
hvsteresis l o o ~ s  f o r  S i l i cone  Rubber RTV-615 F igure  19. Low displacement 

a t  61, 101, and 16k rprn ( top  to 'bot tom) .  

hysteresis loops f o r  S i l i cone  Rubber RTV-J F igure  20. Low displacement 
a t  61, 101, and 166 rpm ( top  t o  bottom). 
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I * i 
Figure  21. Low displacement hysteresis loops f o r  Natural Rubber A 

a t  61, 101, and 166 rpm ( top  t o  bottom). 
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F igure  22. Low displacement hysteresis loops f o r  Natural Rubber B 
a t  61, 101, and 166 rpm (top t o  bottom). 



Figure  23. Low displacement hysteresis loops f o r  Natural Rubber R-45 
a t  61, 101, and 166 rpm ( t o p  t o  bottom). 
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8 

Figure  24. Hysteresis loops for a sheared RTV-615 s i l i c o n e  rubber r i n g  a t  
61, 101, and 166 rpm ( top  t o  bottom). 
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The tes t  r e s u l t s  o f  the dynamic elastomer character izat ion 

experiments were both su rp r i s ing  and most encouraging. 

p r i s i n g  i n  t h a t  previous measurements made on RTV-615 s i l i c o n e  rubber 

showed very large hysteresis ( s i m i l a r  t o  t h a t  f o r  RTV-700 shown i n  
Figure 2). As can be seen i n  Tables 4 and 5 the  hysteresis f o r  RTV- 
615 under the above t e s t  condi t ions i s  comparable t o  t h a t  of the best 
natural  rubber (R-45). A t  l e a s t  a p a r t i a l  explanation f o r  t h i s  r e s u l t  
l i e s  i n  the t e s t  condi t ions and elastomer geometry. Previous measure- 

ments were made on 38 mn x 25 mn x 6.4 mn t h i c k  rectangular pieces o f  
rubber. These were compressed i n  an Ins t ron  t o  60% o f  t h e i r  o r i g i n a l  

thickness (2.6 mn), r e s u l t i n g  i n  a fo rce  o f  about 900 N (200 l b ) .  

l a rge  o f  a compression on a s o l i d  block o f  rubber produces very l a rge  
i n t e r n a l  forces t h a t  can cause the mater ia l  t o  creep w i t h  resu l tan t  f o r c e  

re laxat ion.  With only 20% compression, t he  maximum used f o r  the Table 4 
resul ts ,  and w i t h  a r i n g  geometry these forces are much less  and can 
be re l ieved by l a t e r a l  expansion o f  the r i n g  inward as wel l  as outward. 

We found no s i g n i f i c a n t  change i n  the  shape o f  the hysteresis 
curves w i th  ra tes  up t o  2.8 H z  corresponding t o  fo rce  app l i ca t i on  ra tes  
from 1300 t o  2200 N/s, depending upon the  s t i f f n e s s  o f  the rubber 
sample. Higher ra tes  were not used because o f  l i m i t a t i o n s  i n  the 

experimental set-up. 
over the  range tested, the mater ia l  spr ing constant i s  i n v a r i a n t  

(although two d i f f e r e n t  constants would have t o  be used f o r  high hystere- 
s i s  materials - one fo r  increasing and one f o r  decreasing force) .  

small o f f se ts  among the three curves i n  each Figure are due t o  d r i f t  
i n  the instrumentation and not changes i n  materi  a1 character i  s t i c s  
w i t h  time. The hysteresis seen ranged from 10 t o  21% i n  the compression 

tests ,  depending upon the elastomer type. 
s i l i c o n e  rubber had a hysteresis component comparable t o  the best 
natural  rubber, R-45 (11-12% versus 10-12%). I n  the shear experiment, 
even a t  force app l i ca t i on  ra tes  up t o  490 N/s there was no measurable 

hysteresis as wel l  as no changes among the  three ra tes  used. 

They were sur- 

This 

The slope o f  the curves d i d  not change so that,  

The 

Surpr is ingly,  RTV-615 



PrototvDe Sensor Evaluation 

Evaluation o f  the  prototype sensor was not near ly  as extensive as 
we suggested i n  the Phase I proposal. 

some o f  the  proposed measurements would almost be redundant compared 
t o  those already obtained, adding l i t t l e  in format ion whi le  consuming a 

d ispropor t ionate amount o f  t i m e .  Second, some p o t e n t i a l l y  i n t e r f e r i n g  
e f f e c t s  proved t o  be much s m a l l e r  than we prev ious ly  ant ic ipated so 
t h a t  more sophist icated techniques would have been necessary fo r  t h e i r  
quan t i t a t i on  than we envisioned. 

This was f o r  two reasons. F i r s t ,  

Prototype Sensor Construction 

Based upon the  r e s u l t s  o f  the elastomer character izat ion studies 

we chose RTV-615 s i l i c o n e  rubber f o r  the  elastomeric r i n g  i n  the prototype 
sensor. This mater ia l  was well documented under both s t a t i c  and dynamic 

condi t ions,  having low hysteresis - comparable t o  the  best natura l  rubber 
we have tested so far .  Also, t h i s  p a r t i c u l a r  s i l i c o n e  rubber compound 
i s  very easy t o  degas and cast, p lus  being c lea r  i t  f a c i l i t a t e s  v isual  
inspect ion dur ing fabr ica t ion ,  assembly, and alignment. 

o f  PVDF bonded t o  hol low brass tubes. The fou r  hor izonta l  t rans-  

ducers were bonded t o  2.4 mm square brass tubes having 0.4 mn w a l l  
thickness. 

s l o t s  m i l l e d  i n  a 6.4 mm t h i c k  aluminum p l a t e  (see Figure 25). 
post-mounted transducers were mounted on a 4.8 mm x 2.4 mm rectangular 
brass tube, also w i th  a 0.4 mm w a l l  thickness. This tube was mounted 

v e r t i c a l l y  a t  the  i n te rsec t i on  of  the machined s l o t s  as shown i n  Figure 
25. The two transducers on the wider surface o f  t h i s  post were o f f s e t  
as shown i n  Figures 25 and 5. 
was machined i n t o  the  aluminum base p l a t e  t o  a l low f i l l i n g  the  cent ra l  
r i n g  w i t h  a s i l i c o n e  o i l  acoustic couplant a f t e r  the  cover p l a t e  was 

attached. The cover p l a t e  was made from 1.6 mm t h i c k  brass p l a t e  w i th  

i nd i v idua l  brass tabs mounted on i t  f o r  v e r t i c a l  re f l ec to rs .  The cover 
p l a t e  was bonded t o  the top surface o f  the  elastomeric r i n g  w i th  
Dapcotac #3300 adhesive. 

The transducers used were 3.2 mm x 1.6 mn x 28 pm t h i c k  rectangles 

These tubes were positioned and held by f r i c t i o n  i n  crossed 

The fou r  

The other p a i r  was centered. A p o r t  



c -. 

Figure  25. Prototype Force-Torque Sensor. X ,  brass tube mounted transducers; 
R ,  re f lec tors ;  SR, s i l i c o n e  rubber r ing;  FP, f i l l i n g  port ;  
CP, cover p l a t e .  
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S t a t i c  Evaluation o f  Prototype Sensor 

One o f  the f i r s t  measurements made w i t h  the prototype sensor was 

u l t rason ic  echo strength w i th  and without a ten- foot  length o f  coaxial  

cable connected between the sensor and signal ampl i f ier .  The i n s e r t i o n  

o f  the cable reduced signal  amplitude t o  1/4 the value without the 

cable ( i .e. 0.12 V versus 0.47 V I .  This reduced signal lev21 was s t i l l  
adequate f o r  t ime i n t e r v a l  measurement by zero-crossing detection. 

However, w i t h  much smaller transducers such as 1.0 mn x 1.0 mn the  

signal would be about 1/5 as large and detect ion would probably be 

marginal a t  best. Consequently, f o r  very small, gripper-mounted force- 
torque sensors e i t h e r  on-sensor c i r c u i t r y  o r  short  cables t o  an arm- 

mounted ampl i f ier  module would be required. On-sensor c i r c u i t r y  would 
a lso minimize the number o f  wires e x i t i n g  the sensor package. 

I n  the Phase I proposal we stated t h a t  we would evaluate the 

prototype sensor by applying force and torque components i n d i v i d u a l l y  
and i n  combination whi le  measuring the u l t rason ic  t r a n s i t  t ime f o r  
each sensor. These t r a n s i t  time measurements then were t o  be used w i t h  
the previously measured spring constants and the equations i n  Table 2 
t o  ca l cu la te  the force and/or torque loadings and compare these values 
w i t h  the  applied loading. This procedure would be t ime consuming and 
add l i t t l e  t o  determining the f e a s i b i l i t y  o f  the technique o r  t o  our 
understanding o f  i t s  l imi ta t ions.  The proposed procedure would be 
a t e s t  o f  t he  workmanship used i n  the construct ion o f  the prototype 
sensor and the sophis t icat ion o f  the f i x t u r e s  f o r  applying the force- 
torque components, not o f  the underlying concepts. 

combination produce only t rans la t i on  o f  the cover p l a t e  and, therefore, 

i t s  r e f l e c t i n g  surfaces. Consequently, the sensor's accuracy t o  force 

loading depends so le ly  upon elastomer cha rac te r i s t i cs  which were 

previously determined. The three torque components (Mx, M and MZ) 

tend t o  r o t a t e  the r e f l e c t i n g  surfaces out  o f  alignment thereby a l t e r i n g  

the  u l t rason ic  path length and therefore changing the t r a n s i t  time. 
We have shown i n  our r e f l e c t o r  alignment studies t h a t  r o t a t i o n s  up 
t o  * 5' can be to le ra ted  before t r a n s i t  time, as measured by zero 
crossing, changes by more than f 5 ns. 

A1 1 three fo rce  components (Fx, , and Fz)  appl i ed alone o r  i n  
FY 

Y '  

Therefore, w i t h  the exception 
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of M,, torque loading accuracy depends again p r i m a r i l y  upon elastomer 

character ist ics.  

complex and nonlinear, owing t o  the  geometry involved (Figure 5). 
Again, we have shown f o r  small r o t a t i o n s  ( *  5'1, the d i f ference i n  
t r a n s i t  time var ies l i n e a r l y  with cover p l a t e  r o t a t i o n .  

experiment was conducted t o  measure M, versus change i n  t r a n s i t  t ime 
using the RTV-615 s i l i c o n e  rubber r i ng .  

are shown i n  Figure 26. 

measurement range . 

multidimensional l i n e a r  spr ing i n  our app l i ca t i on  i s  the change i n  
thickness t h a t  occurs when the rubber i s  sheared ( e i t h e r  l i n e a r l y  o r  

angularly). An attempt was made t o  measure the change i n  thickness o f  
the RTV-615 r i n g  during the appl icat ion o f  M,. This was d i f f i c u l t  and 
may be inaccurate s incethecover p l a t e  i s  not  p e r f e c t l y  f r e e  t o  move 
i n  the z-d i rect ion when M L  i s  applied. However, measurements obtained 
ind icated a possible change i n  thickness o f  0.009 mn per degree r o t a t i o n  
o f  the cover p la te.  
F z  i nd i ca t i on  o f  1.3 N (0.3 l b )  would occur f o r  an M, t h a t  ro tates the 

cover p la te  by one degree. 
quanti tated i n  Phase I 1  and i f  necessary, co r rec t i on  algori thms devel- 
oped. 

We did not independently c a l i b r a t e  the prototype sensor based 

upon f i r s t  p r i n c i p l e s  and previously measured spr ing constants because 
we have found small va r ia t i ons  i n  e l a s t i c  proper t ies between s i l i c o n e  

rubber r ings of the same compound. These d i f ferences are l i k e l y  due t o  

v a r i a t i o n  i n  mixture r a t i o s  f o r  the two p a r t  s i l i c o n e  rubber system and 

t o  a lesser extent va r ia t i ons  i n  the rubber-to-metal bond. Because o f  
these var ia t ions and others introduced dur ing sensor construct ion 

(e.g. transducer locat ion,  r i n g  locat ion,  etc. 1 the only p r a c t i c a l  

form o f  sensor c a l i b r a t i o n  i s  by loading the sensor and recording i t s  
response. 

The re la t i onsh ip  g i v ing  M, i n  terms of changes i n  t r a n s i t  t ime i s  

An addi t ional  

The r e s u l t s  o f  t h i s  experiment 
The r e s u l t s  are q u i t e  l i n e a r  over the * 5' 

A p o t e n t i a l l y  complicating f a c t o r  i n  the use o f  an elastomer as a 

Consequently, wi thout correct ion,  an erroneous 

This e f f e c t  has t o  be more accurately 
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Dynamic Eva1 u a t i  on of Prototype Sensor 

No dynamic evaluat ion #as made o f  the prototype sensor f o r  two 
reasons. F i r s t ,  we cu r ren t l y  have no means o f  dynamically measuring 
u l t rason ic  t r a n s i t  t ime and d isp lay ing o r  recording i t  ( t h i s  w i l l  be 
developed during Phase I 1  o f  t h i s  p r o j e c t ) .  Therefore, t he  sensor's 
react ion forces and torques could not be monitored. 

would probably reveal l i t t l e  or  no new in format ion over t h a t  which was 
already known from the dynamic elastomeric character izat ion studies. 

Second, these t e s t s  

Coupling Agent Evaluation 

Prime candidates f o r  acoustic coupling agents i n  the sensor c a v i t y  

These mater ia ls  have acceptably low acoustic are s i l i cone  o i l  and gel. 

attenuation and are i n e r t  and compatible w i t h  other sensor mater ia ls.  

We were previously concerned t h a t  these mater ia ls  may s i g n i f i c a n t l y  

a f f e c t  the mechanical'properties o f  the sensor e i t h e r  by 1) augmenting 

the s t i f f n e s s  o f  the elastomer r i ng ,  o r  2 )  excessively dampening cover 
p l a t e  motion by t h e i r  v i scos i t y .  
used (Dow Corning 200 Flu id ,  5 cs v i s c o s i t y )  ne i the r  concern i s  
founded. The s i l i c o n e  gel (Dow Corning 3-6527 Si l i cone  D i e l e c t r i c  
Gel) was not near ly as viscous as we ant ic ipated and was very compliant 
(compared t o  RTV-615 s i l i c o n e  rubber). However, t o  t e s t  i t s  mechanical 
e f f e c t  we f i l l e d  the sensor cav i t y  w i t h  the gel and subjected the cover 
p l a t e  t o  cyc l i c  displacement along the x -d i rec t i on  whi le  measuring the 

resu l tan t  shear fo rce  and cover p l a t e  displacement. 
the same as t h a t  performed f o r  Figure 24 and the r e s u l t s  were the same, 
i n d i c a t i n g  t h a t  the gel had no appreciable e f f e c t s  on mechanical pro- 
p e r t i e s  o f  t he  sensor. 

With the low v i s c o s i t y  s i l i c o n e  o i l  

This experiment was 

. .  

Pyramidal Ref 1 ector Post 

One addi t ional  experiment was conducted. The purpose o f  t h i s  
experiment was t o  determine the change i n  the  u l t rason ic  echo signal  

produced by p lac ing a 45' metal r e f l e c t i n g  surface i n  the u l t rason ic  

path. This would t e s t  the v a l i d i t y  of the concept presented i n  
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Figure 3 o f  the  Phase I proposal, and reproduced here i n  Figure 27, 
i n  which a l l  u l t rason ic  transducers are mounted on the  planar surface 
of the  sensor substrate and an inver ted pyramidal r e f l e c t o r  post, having 
45' facets, r e f  1 ects the  u l t rasonic  pul  ses so t h a t  they t rave l  ho r i  zon- 

t a l l y  through the  coupl ing agent t o  the  v e r t i c a l  r e f l e c t o r s  and back 

again. 
const ruct ion and improve accuracy, by a l lowing a l l  transducers t o  be 

mounted a t  once, i n  a f i x e d  geometric re la t ionsh ip .  Furthermore, by 
having the  array meta l i za t ion  on the  substrate ra the r  than the  PVDF 
sheet, no connections have t o  be made t o  the  PVDF f i l m .  

A small, f lat-bottomed chamber was f i t t e d  w i t h  a brass p l a t e  a t  

one end or iented a t  45' so tha t  a hor izonta l  ray o f  ultrasound would be 
re f l ec ted  downward by the  brass p l a t e  and r e f l e c t  from the  chamber bottom 
back through the same path t o  the transducer. 

w i th  mfneral oi: and a 3.2 mn x 1.6 mn x 28 pm t h i c k  PVDF transducer 
was pos i t ioned v e r t i c a l l y  and aligned w i t h  the  r e f l e c t o r .  
ducer was pulsed and the  echo signal was recorded. 
repeated without the  45' r e f l e c t o r  over the same u l t rason ic  path length. 
The echo signal  amplitude and shape were the  same. 
scheme i n  Figure 27 appears t o  be feas ib le .  

I f  feas ib le ,  such a design would g rea t l y  s imp l i f y  sensor 

The chamber was f i l l e d  

The t rans-  

The experiment was 

Consequently, t he  

53 



Pyramidal Ref lec tor  

End E f f e c t o r  

F igure  27.  Sensor Design Using a Pyramidal Ref lec tor  Post t o  Allow A l l  
Transducers t o  be Mounted on a Plane Surface. 



IMPLICATIONS OF THE RESULTS 

We have successful ly met our Phase I research object ive.  The 

six-component force-torque sensor can be made small enough (e.g. 10 mn 
diameter) t o  be placed on the gr ipping surface o f  a robo t i c  end e f f e c t o r  

w i t h  u l t rason ic  echo signals s t i l l  la rge enough f o r  accurate t ime i n t e r v a l  

measurement. However, t h i s  may require on-sensor e lect ron ics fo r  echo 
signal  amp l i f i ca t i on  and transducer element mult ip lexing. Simple planar 
r e f l e c t o r s  coupled w i t h  zero-crossing detect ion o f  the u l t rason ic  echo 
signal  a l low r e f l e c t o r s  t o  be rotated out o f  alignment by a t  l e a s t  * 5' 
before s i g n i f i c a n t  t ime i n t e r v a l  measurement e r ro rs  occur, thus l i m i t i n g  
angul ar  d i  spl acement o f  the sensor cover plate,  due t o  appl ied torques, 
t o  5' o r  less.  
reduce object  p o s i t i o n  e r r o r s  due t o  sensor compliance. However, such 
errors are correctable since exact object  :oeation i s  s t i l l  kn~wn.  

We have developed a be t te r  method f o r  measuring MZ, the z-axis 
torque, than o r i g i n a l l y  proposed. MZ measurement was the weakest 
l i n k  i n  the proposed method f o r  measuring sensor cover p l a t e  or ientat ion.  
The revised technique usesoneless transducer and gives accurate, 

l i n e a r  resu l t s .  

l i n e a r  compression and shear character is t ics  so t h a t  spr ing constants 

can be derived t o  convert the u l t rasonic  distance measurements i n t o  fo rce  

o r  torque values. 
RTV-615 s i l i c o n e  rubber i s  an i so t rop i c  mater ia l .  Consequently, i t s  

s t i f f n e s s  under compression i s  unaffected by the degree o f  shear present. 
This f i n d i n g  g rea t l y  increases the f e a s i b i l i t y  o f  the sensor design. 

The s i l i c o n e  rubber r i n g s  had much less hysteresis and f o r c e  re laxa t i on  
t h a t  we expected. RTV-615 was comparable t o  the best natural  rubber 
we've tested t o  date, having about 10% hysteresis i n  compresssion under 
c y c l i c  loading. Without compensation, some fo rce  torque values could 
be i n  e r r o r  by 10% when t h a t  component i s  decreasing. However, we 
have no reason t o  be l ieve t h a t  hysteresis can ' t  be reduced fu r the r .  

i n  force-torque component s e n s i t i v i t y .  Fx and F fo rce  s e n s i t i v i t y  i s  
about ten  times higher than t h a t  f o r  F,. 

This small angular range i s  des i rab le i n  order t o  

The s i l i c o n e  rubber r i n g  i n  the force-torque sensor has 

Furthermore, over the range o f  loadings o f  i n te res t ,  

An i n t e r e s t i n g  f i n d i n g  f o r  the r i n g  geometry used i s  the d i f f e rence  

Y 
S im i la r l y ,  MZ torque measurement 

55 



i s  about ten  times more sens i t i ve  than M, o r  M 
advantageous. For example, w i t h  a screw-driver-type device i n  the  gripper, 

the more sensi t ive F,, 
t i p  p o s i t i o n  r e l a t i v e  t o  the fastener whi le  the  Mx o r  M measurement 
(being less sensi t ive and, therefore, having a wider range) would g ive 

the torque on the fastener, and F, (a lso having a wider range) would 
give the  clamping o r  holding fo rce  on the t o o l .  

Acoustical ly, e i t h e r  s i l i c o n e  o i l  o r  s i l i c o n e  gel are acceptable 
coupling agents f o r  t he  sensor cav i ty .  A t  t h i s  p o i n t  the gel i s  p re fe r -  

able since i t  i s  easier t o  contain. 

Second order complicating e f f e c t s  have been smaller than we a n t i c i -  
pated and theTefore, more d i f f i c u l t  to.measure. 

as changes i n  elastomeric r i n g  thickness due t o  shear and changes i n  M, 
sensing geometry w i t h  sensor cover p l a t e  trans1 at ion.  Quanti  t a t i o n  o f  
these e f f e c t s  w i l l  be made i n  Phase I 1  o f  t h i s  pro ject .  Compensation 
f o r  these e f fec ts  can be made, i n  p r inc ip le ,  i n  sensor software. But 
being small e f fects ,  they may not be s i g n i f i c a n t .  

does not  ma te r ia l l y  change the echo pulse. 

sensing schemes can be used w i t h  - a l l  transducers mounted on the same 
planar substrate, thus g rea t l y  s imp l i f y i ng  sensor construction. 

mounted on a planar substrate, i s  h igh l y  compatible w i t h  our t a c t i l e  
sensors. 

grated sensing package s i g n i f i c a n t l y  smaller and more r e l i a b l e  than two 
separate sensors. 

This difference can be 

, and M, measurements could g ive information on 

Y '  

FY 

Y 

These include such th ings 

Interposing 45' r e f l e c t i n g  surfaces i n  the  u l t rason ic  path length 

Consequently, force-torque 

F i n a l l y ,  the force-torque sensor, especia l ly  w i t h  a1 1 transducers 

Both sensors could share a comnon substrate t o  g ive an i n t e -  



TECHNICAL FEASI BI LI TY CONCLUSIONS 

On the basis of the Phase I f e a s i b i l i t y  study and our past ex- 

perience i n  the development o f  t a c t i l e  sensors using PVDF u l t rason ic  

transducers and elastomeric pads, we conclude t h a t  our six-component 

r o b o t i c  force-torque sensor i s  e n t i r e l y  feas ib le .  More work i s  needed 
t o  quan t i f y  c e r t a i n  second order e f fects  and t o  extensively evaluate 

the sensor under r e a l i s t i c  operating condi t ions i n  order t o  f u l l y  deter-  

mine i t s  capab i l i t y .  

torque sensor are po ten t i a l  small size, low cost, moderate accuracy, 

and high compliance. 

It i s  important t o  remember that  the main features o f  the force-  

Therefore, i t  cannot be viewed as a replacement 
fo r  current  s t r a i n  gauge cross devices, wi th  t h e i r  high accuracy and low 
compliance, i n  a l l  appl icat ions.  However, i n  many applications, such 
as small pa r t s  assembly, compliance can be an advantage and high accuracy 

i s  usual ly  unneccessary. 
on the  gr ipp ing surface o f  the end e f f e c t o r  wi thout s i g n i f i c a n t  loss 
i n  robot payload. 

Being o f  small s ize the sensor can be mounted 
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PHASE I 1  TECHNICAL OBJECTIVES 

I n  Phase I we proved the f eas ib i l i t y  of our force-torque sensor 
concept by demonstrating the feas ib i l i ty  of the various aspects of the 
technology. I n  Phase I1 we wil l  continue the research i n  the areas o f  

sensor design and fabrication, and associated electronics and elastomer 
evaluation and selection. This w i l l  enable us t o  construct and evaluate 
1 aboratory prototype force/torque sensor systems. 
t h a t  these sensors w i l l  have no more t h a n  four e lectr ical  leads exit ing 
the sensor package and w i  11 have the pyramidal ref 1 ector configuration 
shown i n  Figure 27 t o  a l low a l l  eight ultrasonic transducers t o  be 
on the lensor substrate t h u s  simp1 i fy i  ng construction and increasing 
consi stancy. 

I t  i s  the intention of Bonneville Scient i f ic  d u r i n g  Phase I 1  
t o  keep pertinent NASA technical personnel apprised of sensor develop- 
ment progress and t o  send t o  NASA prototype force/torque sensors that  
may be redundant o r  no longer needed for  evaluation. T h i s  would allow 
NASA personnel t o  become familiar w i t h  the sensor and f a c i l i t a t e  
i t s  i ncorportion into NASA systems. Laboratory prototype force/torque 
sensors will be constructed i n  differenct sizes having elastomer rings 
of different  dimensions, durometer, and elastomer type i n  order to  
measure forces and torques over a wide range as well as  t o  better de- 
f ine  the applicabili ty and limitations of t h i s  technology. We a n t i -  
c ipate  comnunications w i t h  NASA personnel t o  better focus sensor de- 
velopment in order t o  meet mission needs. 

A major thrust  i n  Phase I 1  w i l l  be devoted t o  the integration 
of the force/torque sensor w i t h  a dedicated microprocessor. 
processor will control sensor ultrasonic transducer operation, accept 
the transducer echo time d a t a ,  compute the va lue  of the six force/ 
torque components, format the data for  graphic display, and set  con- 
t ro l  l ines  so that  the robot can take appropriate action. 
microprocessor approach: 

I t  i s  anticipated 

The micro- 

This dedicated 

1 .  Frees the robot controller from coping w i t h  the "raw" 
t r ans i t  time da ta ;  
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2. Results i n  a "stand-alone: force/ torque sensor system, 

under h ierarch ica l  con t ro l  o f  the  robot ic  cont ro l le r ,  

capable o f  i n te r fac ing  w i t h  e x i s t i n g  robo t i c  cont ro l le rs ;  

3 .  Allows the same hardware t o  be used w i t h  a va r ie t y  o f  

force/torque sensors; and 

4. Of fers  f l e x i b i l i t y  i n  data processing and cont ro l  s ignal  

generation. 

The overal l  goal o f  the Phase I1  research i s  the design, fabr ica t ion ,  
The design and and evaluation o f  a prototype force/torque sensor system. 

construct ion o f  t h i s  system w i l l  be based upon the  resu l t s  o f  t h i s  Phase 
I 1  pro jec t .  
the  fo l lowing object ives:  

I n  order t o  meet t h i s  goal i t  w i l l  be necessary t o  f u l f i l l  

Objective - 1 - To fu r the r  force/ torque ---- sensor component -- research -- and 
development 

Objective 2 - To design, construct, and t e s t  associated sensor elec- 

t ron i cs  

Object ive 3 - To f u r t h e r  elastomer research and se lect ion - 

Objective 4 - To construct  laboratory prototype force/torque sensors 

Objective 5 - To in tegra te  the  force/torque sensor w i t h  a micropro- - 

cesser 

Objective 6 - To evaluate the  force/torque sensor system 



CONSULTANTS AND COLLABORATIVE ARRANGESNTS 

The research which w i l l  be necessary t o  complete the object ives 

o f  Phase Two w i l l  cover several technica l  d i sc ip l i nes  and i n d u s t r i a l  

appl icat ions.  

spec i f i c  areas of exper t ise t o  form a well-rounded research team. 

be l ieve t h a t  t h i s  approach w i l l  both accelerate and improve the  q u a l i t y  

o f  the  research and w i  11 assure development o f  appl icat ion-or iented 

technology. The ind iv idua ls  and organizat ions which w i l l  consul t  
w i t h  us are l i s t e d  below: 

Therefore, we have rec ru i ted  a number o f  ind iv idua ls  w i t h  

We 

Kent F .  Smith, Ph.D., Associate Professor o f  Computer Science, 
Research ASSOC, Prof., E lec t r i ca l  Engineering, Univers i ty  o f  Utah, Sa l t  
Lake Ci€y, Utah. D r .  S m i t h  i s  responsible f o r  the  computer-aided 
design and production of the  photol i thographic masks f o r  the  u l t rason ic  

array fabr ica t ion .  H is  extensive experience i n  m ic roc i r cu i t  design and 
manufacture and access t o  h i s  u n i v e r s i t y  f a c i l i t i e s  w i l l  a i d  our de- 
velopment of a r r a y  fabr icat ion techniques and design o f  the  supporting 
e lec t ron ic  c i r c u i t r y .  

Engineering, Un ivers i ty  of Utah, Sa l t  Lake City, Utah. D r .  DeVries 
i s  an expert i n  elastomeric mater ia ls science. 
choice o f  elastomer mater ia ls and w i l l  provide laboratory f a c i l i t i e s  
f o r  the  f a b r i c a t i o n  (rubber m i l l ,  e tc . )  and evaluat ion ( Ins t ron  Mater ia ls  
Testing Apparatus) o f  these materials. 

Woods has expressed a wi l l ingness t o  he lp us i n  the se lect ion o f  

e l  astomeric materi  a1 s. 

from h i  s 1 aboratory . 

Akron, Ohio. M r .  D i l l h o e f f e r  w i l l  a lso provide natura l  and synthet ic  

rubber samples fo r  evaluation. 

o f  spec ia l ty  rubber products w i l l  be valuable i n  se lect ing formulat ions 
which perform we1 1 mechanically and which possess des i rab le resistance 
t o  environmental condi t ions.  

V ic to r  Scheinman, Vice President, Advance Systems, Automatix, 

B i l l e r i c a ,  Mass. M r .  Scheinmen i s  our p r i nc ipa l  contact a t  Automatix. 

Kenneth L. DeVries, Ph.D., Professor, Mechanical and Indus t r i a l  

He w i l l  advise us on the  

Curt Woods, Monsanto, Rubber Chemicals Div is ion,  Akron, Ohio. M r .  

He w i  11 provide samples o f  materi  a1 s avai 1 ab1 e 

James D i l l hoe f fe r ,  Vice President, Engineered Rubber Products, 

His  experience i n  design and f a b r i c a t i o n  

--- 
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They have expressed a strong desire t o  work w i t h  us i n  coupling the 

sensor t o  t h e i r  robot con t ro le r  and algori thms f o r  sensory feedback 

robo t i c  control .  

. Rick - __ - Casler, - _-- -- - Manager, New Product Development, Unimation, 
Danbury, Conn. 
funct ions needed f o r  integrated sensor machine functions. He has also 
ind icated tha t  they would ass i s t  i n  evaluat ion o f  the prototype sensor 

system, and w i l l  place a Puma 560 robot w i t h  us f o r  sensor evaluation. 

Gary -- - - Rutledge, - . - - Manager, Machine Preception Department, GMF 

Robotics, Troy, M I .  

force-torque sensing t o  be u t i l i z e d  i n  conjunction w i t h  t h e i r  current  

v i s i o n  aided contro l  systesm. He has ind icated t h a t  General Motors 

w i l l  wor'k w i th  us i n  developing in ter faces and robot-sensor control  

D r .  Smith and D r .  DeVries w i l l  act as paid consultants f o r  

M r .  Casler w i l l  act as an advisor on appl icat ions and 

M r .  Rutledge has ind icated a strong i n t e r e s t  i n  

1 oops. 

Bonnevi l le S c i e n t i f i c .  Curriculum v i t a e  a r e  included i n  Key Personnel. 
M r .  Woods and M r .  D i l l h o e f f e r  w i l l  o f f e r  services through t h e i r  
respective f i r m s  and may charge d i r e c t l y  f o r  spec i f i c  elastomer fab- 
r i c a t i o n s .  The robot f i rms w i l l  donate t h e i r  services. 



METHODS AND RESULTS 

Obiective 1 - To Further Force-Toruue Sensor ComDonent Research 
and DeveloDment 

As stated in the Phase I1 proposal, a major goal of this 

objective was to design and develop a force-torque sensor having 

1) a minimum number of electrical leads exiting the sensor 

package, 2) all ultrasonic transducers on one piece of PVDF 

mounted on a planar surface, and 3) the ultrasonic transducer 

electrode pattern on the sensor substrate rather than on the 

PVDF. A scale drawing of the proposed sensor configuration is 

shown in Figure 28. Figure 29 shows the originally proposed 

metallization pattern on the top surface of the sensor substrate. 

The central structure in Figure 28 is a four-facet reflector post 

that converts the vertical ultrasonic beam from the four 

centrally located transducers to horizontal beams, thereby 

allowing all eight transducers to be mounted on the sensor 

substrate surface. This pyramidal reflector post is shown in 

Figure 30. 

The rationale for consideration one (minimizing the number 

of leads) is the need for a cable whose size, stiffness, routing, 

etc. does not impede robot/end-effector performance rather than 

absolutely minimizing the number of leads brought out of the 

sensor package. Obviously, whether or not a particular cable is 

appropriate would depend upon both robot/end-effector morphology 

and the task to be performed. The trade-off we have is whether 

to bring out of the sensor four leads (plus a shielding ground 

lead), carrying low-level signals, that can only be several 
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L. L CP 

Figure 28. 

X ,  - X8 = ul t rason ic  transducers; RP = r e f l e c t o r  post; 

R ,  - R4 = r e f l e c t o r s  attached t o  cover p la te ;  ER = elastomeric 
r ing;  SS = sensor substrate; CP = coverplate 

Proposed Phase I 1  prototype force/torque sensor. 
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Figure  29. Proposed Phase I 1  substrate meta l i za t ion  pa t te rn .  
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inches long before terminating in an electronics module that 

provides signal amplification and switching; or to have on-sensor 

electronics which would require more leads in the cable but the 

cable could be long enough to terminate at or near the robot 

controller. We have both options available to us. 

Referring to Figure 28, the ultrasonic pathlength for 

transducers X1 through X4 has been made sufficiently greater than 

the pathlength for transducers X5 through x8 so that echoes for 

each set of transducers will not have overlapping time ranges 

under all’ allowed force/torque loadings of the sensor. 

Consequently, each central transducer can be connected 

electrically to each peripheral transducer to reduce the required 

number of electrical leads to four while being able to distin- 

guish which echo belongs to which transducer by the time window 

in which it appears. Figure 31 shows the four pairs of echoes 

obtained in this way. Echoes from transducers one through four 

are to the right of the larger, centrally-located echoes (from 

transducers five through eight). The echoes occurring later in 

time are smaller because the coverplate is not properly aligned. 

The sensor wiring pattern actually used for this configuration is 

shown in Figure 32. A disadvantage of this method is that the 

electrical charge produced by the ultrasonic echo is divided be- 

tween the two transducers so that the resultant signal voltage is 

approximately one-half as large as it would be for separate 

transducers. Experiments were conducted that showed that echoes 

can still be reliably detected with this configuration. 
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FIGURE 32. Photomask o f  Four-Lead Electrode Arrangement. 
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By having all transducers on one planar surface of the 

sensor only one piece of PVDF needs to be bonded to the sensor 

substrate thereby greatly simplifying sensor construction. This 

makes possible putting the transducer electrode and lead pattern 

on the sensor substrate rather than directly on the PVDF. The 

advantages of this are 1) the ceramic substrate is potentially 

easier to pattern than the PVDF, 2) lead attachment (except for 

ground connection) to the thin metal coating on the PVDF is 

eliminated, and 3) alignment of the W D F  relative to the 

substrate is not critical. 

Although putting the transducer electrode and wiring pattern 

on the sensor substrate is advantageous, it does place additional 

demands upon the PVDF-to-substrate bond. This bond must be 

achieved with an adhesive layer no more than about 1 pm thick. 

Appreciably thicker layers will significantly reduce the voltage 

appearing across the W D F  film both when it is pulsed and when it 

receives an echo due to the capacitance voltage divider effect of 

the glue layer. The bond layer must also be of relatively 

uniform thickness across the substrate so that the individual 

transducer sensitivity does not vary grossly. 

During the Phase I1 effort we made excellent progress in 

both photolithography of, and lead attachment to, the W D F  

metal 1 i zat ion. This progress is best illustrated by our 

achievements in tactile sensor fabrication. We are now able to 

pattern both sides of the WDF metallization to produce 1024- 

element tactile sensors having 1/4 mu2 elements with 6 m i l  wide 
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interconnects. 

This sensor, for experimental reasons, had 128 copper-foil leads 

The active area of the sensor occupies 0 . 8  

attached to the sensor rows and columns with conductive epoxy. 

Having this capability, we have not pursued putting the electrode 

pattern on the substrate and producing extremely thin, uniform 

glue layers. 

In the past we have almost exclusively used 28 rm thick W D F  

film since it is not so thick as to be difficult to cut 

accurately or so thin as to be difficult to handle. However, as 

the transducer elements become smaller their capacitance (about 

10 pF for a 4 nun2 transducer) becomes comparable to the input 

capacitance of the receiving amplifier or multiplexer. 

Therefore, the echo signal amplitude can be significantly 

reduced by the capacitance voltage divider effect. By using 9 or 

6 p m  thick film the transducer capacitance is increased by about 

three to five times to offset this anticipated loss. To 

determine the magnitude of this loss single-element transducers 

were constructed from 9, 28,  52,  and 110 p m  thick WDF. These 

transducers all had an active area of 56 nun2. Sensitivity 

measurements were somewhat inconsistent (probably due to our 

rather primitive fabrication technique at the time). Ultrasonic 

echo strengths were about 1, 5, 4, and 6 volts for the 9, 28,  52 ,  

and 110 pm thick films, respectively. Consequently, the effects 

of transducer signal loading by the associated electronics was 

not a significant problem so that there was no compelling reason 
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to change film thickness from the most-convenient-to-use 28 pm 

size. 

We have found in previous work that thin plates of beryllium 

oxide ceramic work extremely well as a highly reflective acoustic 

backing for WDF. We expected cheaper alumina plates to be about 

as good because of the high acoustic impedance of these 

materials. Experiments were conducted to compare the acoustic 

performance of each ceramic. 28 m-thick PVDF was bonded to 1.0 

mm-thick alumina and beryllia plates. The active area of each 

sensor was'56 mm2. Leads were attached and a 1/4"-thick layer of 

silicone rubber was bonded to each transducer. When excited, the 

echo signals were approximately of equal amplitude (within 3%). 

Although these transducers were crudely constructed relative to 

current standards, so that it is impossible to say which material 

performs better the implication of the result is clear. Since 

the same size alumina substrate is about one-twenty-fifth the 

cost of a beryllia unit, alumina is preferable in most 

applications. 

Since there is a wealth of information available on 

producing metallic patterns on the surface of either of these 

ceramics (either by vacuum deposition or chemical etching) for 

hybrid circuitry, we anticipated no insurmountable problems in 

producing the transducer and lead patterns on these materials. 

As previously explained, we did not pursue putting the lead 

patterns on the ceramic but we did try placing the force-torque 

sensor multiplexer electronics on the metallized alumina sensor 
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substrate. A local vendor produced a thin electroless metallic 

plating on the substrate surfaces and in holes through the 

substrate to provide interconnections from the sensor elements to 

the multiplexer switches. Bonneville Scientific electrolytically 

built up this initial plating and patterned it for the sensor 

elements and the multiplexing components. Surface-mount 

components were soldered to the metallization on one side of the 

substrate and the force-torque sensor components mounted on the 

opposite side. This sensor configuration worked thus proving the 

feasibility of this approach. However, this concept was not 

pursued further because it was more time-consuming than using 

conventional circuit board materials for the electronics and the 

electroless plating had poor adhesion to the ceramic. This 

latter problem was likely due to insufficient cleaning of the 

ceramic by the vendor before plating. 

Original plans were to use the University of Utah's Computer 

Science Department's CAD/CAE computer system to produce emulsion- 

on-glass photomasks for the force-torque sensor electrode and 

lead wire pattern. However, we developed an in-house technique 

for photomask fabrication using 35 nun slide photographs of large- 

scale taped patterns. These photomasks have worked well, are 

disposable, and easily replicated at low cost. Moreover, this 

technique allows us to easily and quickly produce new masks to 

try modifications. 

In order to photolithographically process the PVDF 

metallization it must be covered with a thin, uniform coating of 

73 



photoresist. For this we have been using a semiconductor wafer 

spinner. However, in order to support and hold the W D F  film a 

number of custom vacuum chucks and fixtures were made to allow 

both sides of the W D F  to be coated sequentially. The method we 

ended up with uses a rigid (plastic) backing plate to support the 

film and, for rectangular pieces of WDF, four small pieces of 

double-sided tape to secure each corner of the PVDF to the 

support plate. 

Design and fabrication of the sensor's reflecting post 

(Figure 30) is straight-forward. A special fixture was used that 

allowed bar stock to be precisely rotated at 90° increments with 

the stock horizontal, vertical, or at 45O. Once the fixture is 

aligned and positioned on the milling machine table, only two 

table-feed positions are required for machining the 45O 

reflecting facets. After the facets are machined, the post is 

cut to length on a lathe using a parting tool. Fabrication time 

is about ten minutes. Both brass and aluminum posts were made. 

Fabrication of the sensor coverplate is more time-consuming, 

but then, little effort was spent to optimize the procedure. 

One-thirty-second-inch thick brass plate was mounted on an arbor 

and then turned down to a circle of the desired diameter on a 

lathe. The arbor, with brass plate attached, was then placed in 

the same indexing fixture used in post fabrication and four 

narrow slots were machined into the plate 90° apart. Brass shim- 

stock is inserted into each slot and soldered in place. Shim- 

stock protruding from the top of the coverplate is machined flush 
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while the stock below the cover plate is milled to the desired 

depth and width, thus forming the four vertical reflectors. In 

order to protect the force-torque sensor from overload damage the 

coverplate would differ slightly. Tabs would protrude along the 

top of the coverplate that would fit into corresponding recesses 

in the end-effector structure to prevent distortion of the 

elastomer ring beyond safe limits. 

We have been able to find excellent adhesives for both 

bonding the coverplate to the elastomer ring as well as the ring 

to the PVaF metallization. Suitable adhcdves have been found 

for specific formulations of silicone, urethane, and natural 

rubbers. Silicone rubbers are the most difficult to bond to and 

are the weakest (more readily cut or torn). 

We have not tried to increase the coefficient of friction of 

the top (i.e. loading) surface of the coverplate with polymer 

coatings. We would anticipate using thin (e.g. 5 mil) high- 

durometer urethane since this material bonds well to the 

coverplate and is quite abrasion resistant. 

The central cavity (surrounding the reflector post and 

bounded by the inner wall of the elastomer ring) of the force- 

torque sensor needs to be filled with a material capable of 

efficiently conducting the ultrasound. This material also must 

not impede motion of the cover-plate-mounted reflectors or the 

elastomer ring. In Phase I we made preliminary experiments with 

silicone gel and found that this material worked quite well. 

This was also used in Phase If. Acoustic attenuation in the gel 
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was less than that in the silicone rubber ring even though the 

path length was greater. 

Research results concerning the elastomer ring are given 

under Objective 3. 
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Objective 2 - To Desiun, COnstruot, and Tost Assooiated Sensor 

Electronics 

The force-torque sensor electronics consists of three 

subsystems. A system block diagram is shown in Figure 33. One 

subsystem consists of the transducer multiplexer, echo signal 

amplifier, and transducer excitation circuitry. The excitation 

circuitry could be mounted remotely, however, the other two 

components need to be mounted close to the sensor in order to 

minimize signal loss and electrical interference. The option of 

mounting these electronics on the sensor (either on the back of 

the sensor substrate or on the top surface of an extended 

substrate) or near the sensor depends upon the configuration of 

the end-effector. It is interesting to note that on-sensor 

electronics would probably require more electrical leads exiting 

the sensor package than our four-lead sensor design previously 

explained. However, the advantage of on-sensor electronics would 

be greater signal levels and, perhaps, a smaller diameter cable. 

The second subsystem consists of the echo signal zero- 

crossing detector, the time-of-flight (TOF) detector (that 

measures the echo time interval and converts it into a binary 

word compatible with the microcomputer), and the controller. 

The third subsystem is the microcomputer. This subsystem is 

discussed under Objective 5. 

Figure 34 shows a simplified schematic for the first 

subsystem. A T-bar multiplexer integrated circuit (available 

with up to 16 channels) connects the desired transducer to the 
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excitation and amplifying circuitry. This multiplexer has a 

built-in latch for storing the sensor element address. The 

excitation circuitry consists of a three-transistor blocking 

oscillator with a custom-made surface-mount transformer. This 

oscillator supplies a 10-15 volt pulse of approximately 100 ns 

width, independent of moderate changes in trigger pulse 

parameters. In order to prevent overload and the ensuing 

prolonged recovery of the echo pulse amplifier due to the 

excitation pulse, a simple diode protection circuit is used at 

the input 'to the amplifier. This consists of two anti-parallel 

shunting diodes across the amplifier input with a series re- 

sistance to reduce loading on the blocking oscillator. The echo 

amplifier circuitry consists of two cascaded video amplifiers 

providing an overall gain and bandwidth of about 900 and 50 MHz 

respectively, with an input impedance of 10k ohms in parallel 

with 47 pF. Figure 35 shows the amplified echo pulse. The top 

trace shows the excitation pulse artifact at the far left with 

the echo pulse toward the right. The bottom trace is the echo 

pulse expanded in time (1O:l) showing the zero-crossing region. 

Figure 36 shows a simplified schematic for the second 

electronics subsystem. The first component of this subsystem is 

the zero-crossing detector. Arrival time of the echo pulse is 

defined to be the time interval from the leading edge of the 

excitation pulse to the first zero-crossing of the approximately 

single sinewave-cycle echo pulse. Because of the electrical 

noise, baseline irregularities due to the excitation pulse, and 
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the variable amplitude of the echo pulse, timing windows, 

filters, and nonlinear analog signal processing functions 

(differentiation and absolute value) are used to enable a 

precision, high-frequency zero-crossing detector. With this 

configuration we can discriminate against detection errors. The 

zero-crossing detector generates digital data corresponding to 

zero-crossing time and polarity (used with tactile sensors where 

echo polarity depends upon the relative acoustic impedance of the 

grasped object) of the echo signal and also generates an error 

signal in the event of false or no detection. 

Components of the first subsystem and the zero-crossing 

detector were tested with a force-torque sensor and we found that 

amplifier recovery, gain, impedance, and bandwidth were suf- 

ficient. Neither multiplexer on-resistance nor spurious capaci- 

tive loading of the array element was objectionable. 

The next component of this subsystem is the time-of-flight 

(TOF) detector shown in Figure 37. The TOF detector measures the 

time interval between excitation and echo zero-crossing detec- 

tion. A gated counter was used for this function that employs a 

50 MHz time base that gives about 40 m resolution of elastomeric 

ring displacement. Concurrent with the development of this 

detector was a small design effort to implement a custom CMOS 

VLSI TOF detector having 10 ns or 20 m resolution. Working 

integrated circuits were fabricated but we have not pursued use 

of these circuits. First, tests need to be conducted with the 
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force-torque sensor to determine what time/displacement resolu- 

tion is required. 

The last subsystem component is the control circuitry and 

the interface to the 68000 microcomputer subsystem. The force- 

torque-sensor-to-68000 interface is a parallel interface which 

uses a finite-element state machine for control and a parallel 

interface integrated circuit (PI/T) for address and data trans- 

fer. Output signals from the microcomputer which initialize the 

sensor and state machine, pass through the PI/T. The state 

machine then controls timing, handshaking and data flow allowing 

the sensor to send its data through the PI/T to the microcom- 

puter. 

The heart of the interface is the finite-element state 

machine. Eight separate states are used for a complete cycle. 

These include: latching sensor element address, sending a start 

pulse to the sensor, latching the sensor data, and then trans- 

ferring these data to the microcomputer for processing. The 

state machine operates at 20 MHz and interlocks the sensor and 

microcomputer allowing data transfer at the proper times. 

Sensor element address and data are transferred via  the 

Motorola 68230 PI/T integrated circuit. At the start of a cycle 

the microcomputer sends a sensor element address to the PI/T. 

The PI/T stores the information in one of its two 8-bit ports 

until the proper handshake signals are received from the state 

machine. The address is then sent to the sensor for element 

selection. As the sensor electronics processes the analog 
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signals, the PI/T and state machine wait for valid data to be 

sent from the sensor. These data are then latched into the PI/T 

where it waits for access to the VME buss and the 68000 micropro- 

cessor. When transferring large address words or large data 

words (greater than 8 bits) the two 8-bit ports can be combined 

into one 16-bit port. 

A test mode was incorporated into the design to allow quick 

testing of the interface hardware and microcomputer software. 

This test mode, called loop back, electronically connects the 

interface input to its own output, disabling all connections to 

the sensor. Loop back was incorporated to allow quick trouble- 

shooting of the complete system (i.e. microcomputer, interface, 

and sensor). When loop back is enabled, the microcomputer 

outputs data and immediately sees the same data on its inputs. 

The software then processes these data as if they had been sent 

from the sensor. 

An emulator was constructed to copy the function of an 

actual sensor. With the emulator each time-of-flight (TOF) value 

for the eight force-torque sensor transducers can be varied 

independently. This allows software to be developed and the 

system to be checked out without connection of an actual sensor. 

The emulator connects directly to the interface exactly as the 

sensor would. Operation of the emulator is provided by a small 

finite-element state machine and an a-bit, 8-channel A/D con- 

verter. The emulator state machine control6 all handshaking with 

the interface and also controls the A/D converter. Eight 
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potentiometers, one for each TOF value, are connected to the A/D 

converter. 

The interface was designed and built with ease of operation 

in mind. The additional circuits, loop back and the emulator 

were incorporated to enhance software development as well as 

giving a person, unfamiliar with the circuit design, the ability 

to check out the entire system. Once the system has been checked 

with the emulator and found to be operating correctly, remaining 

faults lie with the sensor itself or the associated sensor 

electronics. 
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The primary requirement of the elastomer ring in the force- 

torque sensor is its behavior as a linear, multidimensional 

spring. For this the force/defonaation characteristics of the 

material must be precisely determined. The stiffness or duro- 

meter of the material must be chosen to give the desired force- 

torque sensitivity and dynamic range which also depends upon 

linearity of the material characteristics. Because elastomeric 

materials exhibit stress relaxation, there is some dependence of 

force on the speed of compression. Therefore, the force/deforma- 

tion characteristics must be determined dynamically as well as 

statically. Hysteresis, which is directly related to stress 

relaxation, is also undesirable because decreasing forces or 

torques may require different calibration factors. Another 

undesirable characteristic of some elastomers is creep or 

compression set. This is evident when the material does not 

return to its original shape after it is severely compressed or 

stretched for long periods of time. We must select elastomers 

that will satisfy the desired operating parameters and minimize 

undesirable characteristics. 

Natural rubber has several unique properties for our 

application. It has the greatest resilience of any elastomer and 

is the most suitable for applications requiring a combination of 

high resilience, strength, fatigue resistance, and low hystere- 

sis. It is available in a wide range of hardnesses and resists 

fatigue by crack propagation because of strain-induced cry- 
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stallization at the apex of the crack. Its major disadvantages 

are lower resistance to solvents, oil, oxidation and extreme 

temperatures along with limited bonding options. New accelerated 

efficient vulcanization systems of different vulcanizing agents 

such as urethane reagents or peroxides can improve some of these 

deficits. Further improvement in environmental resistance with, 

perhaps, some sacrifice in mechanical properties can be obtained 

with alternative materials. These include neoprene for oil 

resistance: various chlorinated polymers for good chemical, oil, 

solvent, oxidation, or temperature range, oxidation resistance 

and very low compression set: or fluorosilicones with increased 

fluid and heat resistance. Urethanes are more rugged than 

natural rubbers and recently have become available in low modulus 

(durometer) formulations with low hysteresis. 

We have evaluated the compression characteristics of several 

different formulations of natural and synthetic rubbers. Our 

selection of materials was based upon our experience and the 

recommendations of Dr. Kenneth L. DeVries of the University of 

Utah and Mr. James Dillhoeffer, Vice President, Engineered Rubber 

Products, Akron, Ohio. 

Initial screening of the elastomers was on a Chatillion 

This Tension-Compression Tester at Bonneville Scientific. 

machine can be programmed to apply or remove forces until a 

preset upper or lower limit is reached: or to compress or stretch 

a specimen at a constant rate until preset limits are reached. 

Our standard screening test consisted of compressing the elas- 
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tomeric compound at a constant rate (usually 0.2 in/min) until 

20% or 40% compression was reached. This deflection was held for 

2.0 minutes so that material stress relaxation could be measured 

and then the material was decompressed at the same rate as 

compression. During this test cycle loading force and elastomer 

deflection were recorded by an x-y recorder. Deflection output 

of the tester did not have sufficient resolution (0.001 in.) for 

this test. Consequently, a linearly variable differential 

transformer (LVDT) transducer was installed for deflection 

measurement. This transducer improved deflection resolution by 

about two orders of magnitude. We had proposed using ultrasonic 

pulse-echo ranging to measure elastomer deflection during this 

test in order to achieve the required resolution. This was not 

implemented because the LVDT method was simpler and more direct 

(e.g. immune to environmental temperature changes that would 

affect the speed of sound in the elastomer). 

Figures 38, 39, 40, 41, 42, 43, 44, 45, and 46 show typical 

Figures 38 results of this test for several types of elastomers. 

and 39 show the results for two silicone rubbers having the 

lowest hysteresis we have found to date. The 184 compound is 

more easily bonded to than the 615. Figure 40 is another 

silicone formulation having low hysteresis and very low duro- 

meter. In each figure the upper curve is the rubber response for 

increasing force; the vertical drop at maximum deflection is due 

to the stress relaxation (over a two-minute period): and the 

lower cunre results from decreasing force. An ideal material 

90 



0 
rt 3 91 



0 

(\I 
0 
h 
0 

92 



ORIGlNAt PAGE IS 
OF POOR QUAUTY 

93 



c 
d 

94 





b 



P 0 97 



P 

P 



cu 
0 e. 
0 

0 
99 



(i.e. spring) would produce a single straight line, the slope of 

which would give the material spring constant (force per unit 

compression). Therefore, our material selection criterion is to 

have the force-deflection characteristic as close to a single 

straight line as is possible (this also implies the least 

separation between the upper and lower curves). Figures 41, 43, 

and 45 show the deflection characteristics for natural rubber, 

neoprene, and urethane, respectively, for formulations having low 

hysteresis. We conclude that these formulations (Figures 38, 39, 

40, 41, 43, and 45) are all candidates for use in the force- 

torque sensor. Figures 42, 44, and 4 6  are illustrative of 

materials with unacceptable-large amounts of hysteresis. 

Figures 47, 48, and 49 show the time course of stress 

relaxation in silicone, natural, and neoprene rubbers. These 

cumes show that for small compressions, especially with natural 

rubber and neoprene, stress relaxation occurs mainly within the 

first minute of load application so that the two-minute waiting 

period used in the first set of figures for stress relaxation to 

occur is valid . 
The presented force-deflection characteristics determine the 

force-torque sensor's response to the normal compressive force 

F,. Figures 50, 51, and 52 give the rubber characteristics for 

the other five load components. As one can see for the tangen- 

tial or shear force components, Fx and Fy, the characteristics 

are quite linear with little hysteresis. An artifact caused by 

the fixturing appears as a nonlinearity at low force. The 
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rocking torque components, Mx and My, also have approximately 

linear characteristics with little hysteresis. The remaining 

torsion component, M,, (Figure 52) also is quite linear with very 

little hysteresis. 

We proposed measuring compression set of candidate elas- 

tomers at room temperature for initial screening at then elevated 

temperatures for the final material selection. Instead, we 

relied upon the manufacturer's published values. For example, 

for one of the urethanes compression set was from 1.8 to 3.2% 

(depending' upon the amount of plasticizer used) after being 

compressed for seven P a w  at 25O C. Measurements are typically 

made at large compressions (e.g. 50%) where compression set can 

be expected to be large. The 1.8 to 3.2% range means that the 

material returned to within 0.9 to 1.6% (1.8-3.2% x 50%) of its 

prestressed state. For silicone rubbers compression set is 

typically 20% after 22 hours at This temperature is 

extreme and beyond the survival temperature of the force-torque 

sensor. At lower temperatures compression set is much less. The 

practical consequences of compression set are minor. The force- 

torque sensor readings would be periodically zeroed when the 

sensor was unloaded. This would compensate for changes in 

elastomer ring dimensions due to both compression set as well as 

temperature. 

Durability of a representative elastomer was measured from 

life-test results. For this test apparatus was fabricated so 

that a metal plate driven by a cam compressed the material in a 
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cycle similar to that expected with an operating robot. The duty 

cycle passed through a zero stress point to simulate robotic 

manipulations and because fatigue life of rubbers is much shorter 

if the material passes through a relaxing phase in the cycle. 

Immediately after cyclic compression the force/compression slope 

was determined to see if there had been any alteration of the 

mechanics of the material which would indicate the need for 

recalibration following extended use. 

A l/lnV-thick piece of Sylgard 186 silicone rubber was life- 

tested by cyclic compression (0.10" or 40%) at a rate of about 

one per second for 16 million cycles. After testing, the force- 

displacement characteristics of this piece and a control sample 

from the same batch were measured (see Figure 53). There was no 

significant difference between the characteristics indicating 

that life testing did not affect this mechanical characteristic. 

From the results of the preceding tests we conclude that 

specific formulations of silicone, urethane, natural, and 

neoprene are all well-suited for use in the force-torque sensor. 

However, we have concentrated on the use of the silicones and 

urethanes because with simple laboratory procedures and apparatus 

they can be fabricated with different durometers and easily cast 

in different shapes. Consequently, we have conducted limited 

studies on the effects of temperature on these materials and 

sensor performance. One series of tests was to determine how the 

compression characteristics of these elastomers change with 

temperature. Measurements were made from room temperature up to 
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95O c for silicone and 70° C for urethane. The results showed 

that there was no change in the slope or the amount of hysteresis 

of the compression-deflection curves so that one constant (i.e. 

the spring constant) can be used over a range in temperature. 

However, there was an offset in the curves due to the expansion 

of the rubber with increasing temperature. The second series of 

tests was to measure the ultrasonic propagation time of pulses in 

silicone and urethane elastomers at different temperatures. This 

transit time depends upon both the thickness of the elastomer and 

the speed bf sound in the elastomer (both of which are functions 

of temperature). These measurements are shown plotted in Figure 

54 for temperatures ranging from about 20 to 60° C. The slopes 

of the lines, normalized to unit thickness of elastomer are 6.5 

ns/mm-OC for silicone rubber and 3.4 ns/mm-OC for urethane. The 

smaller effect in urethane is primarily due to the smaller linear 

coefficient of thermal expansion of urethane (1.1 x 10'4/0C) 

versus silicone (3~10'~/~C) . Based upon these values the speed- 

of-sound change with temperature was calculated and is presented 

in Figure 55. The change is linear over the temperature range 

investigated and the slopes of the lines are negative. Since the 

pulse transit time is the quotient of distance (i.e. material 

thickness) and sonic velocity, the negative slope serves to 

increase transit time with temperature increase. However, the 

main temperature effect is material expansion with temperature. 

At this point in our research it appears that the effects of 

changing temperature on the force-torque sensor data can be 

110 





112 

__,. .  
! '  
i 1  . i  

. i .- 
I 
I .  
I 

_.:_. . 
I 
! 
I '  .+- 

I 
,- 
! 

! 

. .  . 
I 

_ .  . 

_ _  I . . . .  
I 

..A,... :I.:* 
:.I.: 

I 1  

: ' !  ' -  

j 

I . r .  .. . 

. + -. 

. . I , .  . 
I 

--?. -- 

. . I  . 

I 

. , . ... 

I 

I 
.. . . - 

( 

4 
- 14 

I ! .  

1 

! 
. .  , 
,. . ! 

, .  
I . I  

1 1  

I ,  , i 

, . I .  ' . i  I 

'i!. . 
I '  

' I  
'\.- 

i 
I '  

.I... ..;-.- 

...... I ..., - 
\ 

i 
. . . I . . :  .. . '  

I .  ' 
! 

, 1 ; . .  
I '  

-..:, ... ..-I. . 
I I 



compensated by zeroing the sensor periodically when it is 

unloaded. Zeroing is achieved by recording the TOF values for 

each of the eight transducers when the sensor is unloaded. 

Ensuing force-torque measurement are based upon only the chancre 

in transit time with loading so that these offsets would be 

cancelled. 

No significant effect of adhesives on the force-torque 

characteristics of the elastomer were observed. The date taken 

for Figures 50, 51, and 52 involved elastomeric rings that were 

bonded to metal plates. 

113 



Obiective 4 - To Construct Laboratom Prototme Force-Toraue 

 sensor^ 

The key aspects of this objective are the proper alignment 

of the elastomer ring, reflector post, and coverplate; and the 

bonding of the elastomer ring to the coverplate and metallized 

surface of the PVDF, and the bonding of the reflector post to the 

sensor substrate. Towards this end, a number of laboratory 

prototype force-torque sensors were fabricated. 

The elastomer ring must be centered over the four peripheral 

ultrasonic'transducers that transmit through the ring. This is 

complicated by the fact that the transducer and lead pattern is 

on the bottom surface of the WDF next to the substrate and, 

therefore, cannot be seen. A similar problem exists in centering 

the reflector post. These problems have been solved by placing 

alignment marks on the top metallized surface (i.e. the ground 

plane) of the WDF. Figure 56 shows the pattern of these marks 
I 
I on the photomask for the ground plane (the concentric dashed 

circles), and the reflector post (dashed perpendicular lines and 

small central medallion). During fabrication adhesive is applied 

to the bottom surface of the elastomeric ring, and it is careful- 

ly positioned within the boundaries of the circular patterns. 

For mounting the center post a small hole is drilled through the 

central medallion and ceramic substrate. This hole allows the 

reflector post to be bolted to the substrate. Before tightening 

the bolt the interior lateral walls of the 45O facets are aligned 

I 
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FIGURE 56. Photomask for  PVDF Ground Plane Showing Alignment Harks 
( 2  X Magnification). 
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with the dashed perpendicular lines. This procedure is simple 

and it works well. 

Coverplate alignment is done by the method presented in the 

Phase I1 Proposal. That is, transducers Xl, X2, X3, and X4 

(Figure 3 1 )  are sequentially energized while the coverplate is 

translated until all four echoes occur at the same time when 

viewed on an oscilloscope, indicating that the four vertical 

reflectors on the coverplate are equidistant from their respec- 

tive transducer. The final step is to rotate the coverplate 

until all ‘four echoes are a maximum amplitude, indicating that 

the reflectors are now perpendicular to the ultrasonic beam. In 

practice, this procedure was almost impossible to perform by 

hand. Just small motions of the coverplate (25 microns) will 

produce large time-excursions (100 ns) of the echo pulses. 

Consequently, an X-Y-0 table should be used for coverplate 

alignment. This fixture can also be used to prevent motion of 

the coverplate during curing of the bonding agent that attaches 

the coverplate to the elastomer ring. 

The force-torque sensor is comprised of several layers of 

various materials all of which must be securely bonded together. 

Consequently, choice of the proper adhesive for each bond is 

vital to the survival of the sensor. The least demanding bond in 

the sensor is between the PVDF layer and the ceramic substrate. 

Since the bonded surface area is so much greater than that of the 

other areas, the bond strength can be less. For this bond we use 

a general purpose, low viscosity epoxy adhesive. This is cured 
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at 65O C for three hours. The more critical bonds are between 

the PVDF metallization and the elastomer ring, and the ring and 

coverplate. The type of adhesive used here depends upon the 

elastomer family used. In general cyanoacrylate adhesives work 

very well with neoprene and natural rubbers. During destructive 

testing the rubber typically fails rather than the adhesive. For 

urethane elastomers polyurethane adhesives work well, although 

for very-low durometer formulations the additional plasticizer 

required may impede bonding. The most difficult compound to bond 

to is silicone rubber. Initial experiments with a two-component 

silicone-rubber-based adhesive gave good results when used in 

thick layers (the uniformity of which is difficult to control) 

but the material failed to cure when used in thin layers. We 

thought that this problem was due to the poisoning of the 

adhesive by the sulphur or tin ions in the silicone rubber 

catalyst. However, switching to a platinum-based catalyst did 

not solve the problem. The elastomer vendor suggested that 

atmospheric oxygen might be poisoning the adhesive-a difficult 

problem to solve. We eventually ended up with a single-component 

silicone rubber adhesive/sealant used in conjunction with a 

primer. This is cured at room temperature and results in strong 

bonds . 
In Phase I we constructed a crude prototype force-torque 

sensor having an elastomeric ring with a one-inch outside 

diameter. This sensor size seemed reasonable and was the size 

stated in the Phase I1 proposal. However, when complete proto- 
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type sensors were constructed we went to a 1 1/4 in. diameter 

ring to make fabrication easier. After several sensors of this 

size were constructed and we gained confidence in the fabrication 

procedure, we explored how small the sensor could be made before 

the current procedure failed. We didn't reach this point, but we 

did fabricate a miniature force-torque sensor having a ring 3/8 

in. in diameter with a reflecting post 0.080 in. across. 

Ultrasonic echoes from the approximately 1 nun2 elements were 

detectable. However, we don't yet know whether a sensor this 

small will' be practical. Being scaled down in size by about a 

factor of three, the time resolution of the TOF detector must be 

increased by three. This will be more costly. 
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Obieotive 5 - To Intourate th 0 Foroo-Toraue Sonsor with a 

nicrormocessor 

A major goal of Phase I1 was the integration of the six- 

component force-torque sensor with a dedicated microprocessor. 

The ensuing sensor system is a laboratory research tool that can 

serve as a test bed for continuing sensor research and develop- 

ment, data acquisition and analysis, and algorithm development 

rather than a market-ready product. The microcomputer system 

consists of a VME CPU board, VME card cage and power supply. The 

CPU board contains an 8 MHz 68000 microprocessor, 128 Kbyte DRAM 

(upgradable to 512 Kbyte) 32 Kbyte of EPROM space, two RS-232C 

SI0 channels, one 16 bit bidirectional channel, programmable 

timer, real-time clock, and battery support. Several expansion 

slots are available in the card cage that could be used in 

augmenting microprocessor memory and 1/0 capability. 

The software support for this system includes an 1/0 library 

that directly supports the high-level language mCm. The develop- 

ment software aids in program and EPROM generation for maxhum 

portability of @W1 code. Any application written in can be 

ported to this system with minimal effort. The ITn code can be 

placed in read-only-memory allowing the entire low-level system 

to be contained on the C W  board. 

The system has been configured and programmed to demonstrate 

the functioning of a force/torque sensor in real time. In this 

configuration, the 68000 board ia attached to three other 

devices. One of these is the sensor interface board, which links 
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the sensor to the 68000 via the W E  bus. Another is a standard 

CRT monitor. This provides the user's interface to the microcom- 

puter. 

This terminal is connected to one of the serial ports. 

Finally, a second serial port is used to communicate with an 

Apollo DN3000 workstation. This is a more powerful computer with 

a color monitor and bit-mapped color graphics capability. This 

capability is exploited in displaying the force/torque data in a 

visually meaningful format. 

The next two sections describe in greater detail the tasks 

performed by the 68000 microcomputer board and the Apollo 

workstation, and the software which has been developed to achieve 

these goals. 

As discussed above, the 68000 processor is the central 

controller of the system, and as such it is responsible for 

collecting, interpreting, and routing the force-torque data. A 

single datum, or reading, from a sensor is defined as the TOF 

value of each of the sensor's eight transducers at a given 

instant. The processor takes such a reading by polling each of 

the elements in turn. At the software level, this is ac- 

complished by writing a control word to a register of the 

memory-mapped parallel port on the sensor interface board, and 

then waiting for the port to indicate that it has received data 

from the sensor. The control word includes the address of the 

element being polled, and the data returned is the eight-bit TOF 

value from that element. This is done eight times with eight 
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different transducer addresses to input a complete sensor 

reading. 

Once raw TOF data have been input to the processor, the next 

step is to perform the conversion from this form to values of 

force and torque. Since force and torque are each vectors in 

three-space, a total of six values are computed from a single 

sensor reading. The mathematics of this conversion are deter- 

mined by the geometry of the sensor and are given in Table 2. It 

is a simple linear mapping in which each component of force or 

torque depends on either two or four of the eight time-of-flight 

values, and each TOF value affects exactly one force and one 

torque component. Thus the six conversion functions are quite 

decoupled. It might appear that in converting eight values to 

six, some information is being lost; however, this is not the 

case, since the eight TOF values are not independent of each 

other due to the constraints imposed by the physical sensor. In 

fact, they have only six degrees of freedom. The constants in 

the linear equations which define the mapping to force and torque 

depend on the sensor, and are determined empirically. To aid 

in calculating these conversion constants, a calibration facility 

is provided in the microprocessor’s software which directs the 

user to apply various loads to the sensor and takes readings of 

the sensor under these loads. These readings, along with the 

inverse conversion relations, uniquely determine the correct 

constants to use. 
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If this facility is not invoked, a set of default constants 

is used. These defaults assume that each of the sensor's 

transducers can produce values in the full 8-bit range of 0 - 255 
(which is not necessarily true of a real sensor). When ap- 

propriate (calibrated) conversion constants are used, the 

conversion functions as implemented in 68000 software yield 

integer values which range in [0,255], where 0 indicates the 

minimum (most negative) value of force or torque which the sensor 

can produce, 255 corresponds to maximum value, and 128 maps to 

zero. This eight-bit format was chosen because it simplifies 

data transmission on serial lines, and because resolution is 

currently limited to 8 bits by the TOF detector. 

The final task of the microprocessor, having collected and 

interpreted a datum from the sensor, is to have it displayed. 

Data can be displayed on either the monitor's screen, the Apollo 

workstation's screen, or both. In order to transmit force-torque 

data to the Apollo, a format was devised in which each single 

component of force or torque is encoded as two ASCII characters, 

which together denote the data value in hexadecimal. Each of 

the six values is thus encoded in two bytes, and an implicit 

ordering of these byte-pairs determines which of them corresponds 

to which force-torque component. For synchronization, a non-hex 

ASCII character is transmitted between each reading. 

Altogether, then, a single sensor reading formatted for 

transmission comprises 13 bytes. These are sent over a serial 
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(RS-232) line at 9600 baud, achieving a data rate of over 80 

sensor readings per second. 

All of these features of the microprocessor's software are 

tied together in a single menu-driven system. The menu allows a 

user to specify the number of consecutive readings to be made and 

the destination of the data. If the destination includes the 

terminal screen, the user can also choose among different data 

formats, such as raw TOF values, force-torque values in hex or 

decimal, or a combination of these. The implementation of this 

menu system takes advantage of the escape sequences and graphics 

characters of the WYSE-50 standard monitor. The entire program 

resides in two programmable read-only memory chips, which plug 

into the microprocessor board. 

The purpose of the graphics application programs developed 

on the Apollo workstation is to display force-torque data in 

real time in a meaningful way. Two different display concepts 

have been developed. One of these uses two-dimensional graphics 

to draw what is essentially an animated histogram of the six data 

components, and the other draws a three-dimensional object on the 

screen and manipulates it in response to incoming force-torque 

data. Both of these programs operate as slaves: that is, they 

wait for data to arrive on the serial link to the microprocessor 

board and display it in an endless loop. 

The two-dimensional version paints on the screen six 

horizontal bars, each of which indicates the value of one 

component of either force or torque in the input data. The left 
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end of a given bar corresponds to the minimum value of that 

component, and the right end corresponds to maximum value. 

Points in between the two ends map linearly to the range of 

component values; in particular, the midpoint of the bar cor- 

responds to a value of zero force or torque. Initially, each 

bar is drawn as a hollow rectangle with a vertical line crossing 

it at the zero point. Such a bar indicates zero force or torque. 

A non-zero force or torque value is indicated by a filled 

rectangle drawn inside the appropriate bar. This solid 

rectangle extends from the zero point on one side to the point 

indicating the value on the other. 

When several consecutive data readings are input to this 

program, the effect is to "animatewn the bars. That is, as a 

data component changes value, the solid rectangle drawn in the 

corresponding bar changes size. Several or all of the six 

components may change simultaneously, and this is reflected by 

several changing rectangles in appropriate bars. This display 

algorithm is simple enough and the graphics hardware of the 

Apollo DN3000 is fast enough that the screen fs updated about 35 

times per second, a rate which provides very smooth animation. 

However, the histogram-style display does not give a geometrical- 

ly intuitive feel for the meaning of the force-torque data. 

The three-dimensional version attempts to overcome this 

shortcoming. It maps forces and torques applied to a sensor onto 

translations and rotations, respectively, of an object on the 

screen. Several objects were tried; the one deemed best is a 
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simple wireframe cube with an arrow drawn on its front face to 

help disambiguate its orientation. Initially, the object appears 

in an upright position in the center of the display area. This 

view of the object corresponds to an unloaded sensor, i.e. zero 

force and zero torque. A s  shear forces in X or Y are applied, 

the object shifts similarly in X or Y on the screen. Thus a 

shear force in the positive X direction moves the object to the 

right, and so forth. Forces along the sensor8s Z-axis (normal 

to the sensor's surface) cause the object to grow or shrink, 

creating the impression of movement along the display's Z-axis 

(normal to the screen). In the same way, torques applied to the 

sensor about its coordinate axes produce rotations of the object 

about its own corresponding axes. (The object is considered to 

be at the origin, hence it always rotates around its centroid.) 

The magnitude of rotation about any one axis ranges from -45O for 

minimum torque to +450 for maximum. 

The implementation of this algorithm on an Apollo DN3000 

succeeded in creating the desired illusion, i.e. that of manipu- 

lating the object by applying appropriate forces and torques to 

the sensor. However, it was unable to run as fast as the two- 

dimension version, due to the extra computational requirements of 

three dimensional object modeling. Faster floating-point 

hardware would reduce this problem. A more fundamental drawback 

pertains to the algorithm itself. This is that the position 

and orientation of the object, as displayed on the screen, is not 

always enough to determine uniquely the corresponding forces 
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and torques. This is due to information lost in projecting the 

object onto the two dimensional screen. In particular, if there 

is more than one non-zero component of torque, the rotations 

become difficult to disambiguate. Taken together, these two 

display programs compensate for each other's drawbacks. 

Unfortunately, due to display hardware limitations, it was not 

possible for us to integrate them in a single display. Neverthe- 

less, they provide a good demonstration of the response charac- 

teristics of a force-torque sensor. 

The whole system was tested and debugged using the sensor 

emulator previously described. The emulator uses the same 

interface at the hardware level as do real sensors, that is, it 

communicates with the sensor interface board with the same 

signal protocol. The simulated TOF data, too, take the same 

8-bit format. Thus the box connects directly to the sensor 

interface and the rest of the system sees no difference from an 

actual sensor. 
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Ob30oti~0 6 - TO B~alUatO tho ForoO-TOruuO 60osor 8V8 t m  

Unfortunately, time ran out before we were able to integrate 

the force-torque sensor with the controlling microprocessor in 

order to evaluate sensor performance. Part of this objective was 

to explore sensor calibration issues. The following presents our 

thoughts on the subject without the benefit of experimental 

results. One possibility would be to calibrate the sensor once 

by the individual application of each of the s ix  force-torque 

components and assume this calibration remain8 valid until proven 

otherwise.' At that point the sensor could be considered to have 

failed and therefore replacement is required. Thi8 approach is 

probably not realistic since the sensor will likely need periodic 

recalibration to maintain its specified accuracy and the user 

will require proof that the sensor is operating properly. The 

question then becomes do all six force-torque components have to 

be applied for calibration? The answer is no for a perfectly 

constructed sensor that has sustained no damage. This is true 

because components F,, Fy and Mx, My are symmetrical so that only 

one from each pair needs to be applied. Furthermore, three 

components (FZ, M,, and My) compress the elastomer while the 

other three (F,, FYI Mz) shear it. Therefore, in principle, Only 

one component from each parenthetical groups needs to be applied 

since the sensor's response to the other four components can be 

predicted from its response to the two initial components. In 

practice, though, sensors will not be perfectly constructed and 

will age or receive minor damage that will affect calibration. 
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Therefore, a simple method to apply each of the six components is 

needed . 
If the robot with its sensorized end-effector were to pick 

up an object in a macro-gravity environment at the object's 

centroid, then appropriate motion of the end-effector would 

produce the three force components, all of which would be equal 

to object weight. No torque components could be produced by this 

method since grasp is at the centroid. If instead the object is 

grasped a known distance along the x-axis from the centroid, Fx, 

My, and MI would be individually produced (analogously for a 

displacement along the y-axis, FYI Mx, and M, would be produced). 

F, could not be produced directly in this way, but probably could 

be accurately inferred form the Mx and My responses. Assuring 

that this calibration object is gripped repeatibly at the desired 

location could be achieved by having suitably formed indentations 

in the sides of the calibration object that would produce self- 

centering and self-aligning forces when grasped at the indented 

regions. 

After many delays a PUMA 560 six-degree-of-freedom robot was 

lent to us by Unimation to aid us in our tactile and force-torque 

sensor development. This robot is operational and programs have 

been developed to move the wrist along different paths. Being 

supplied without an end-effector, we were fortunate in that a 

servo-operated, parallel-jaw gripper was lent to use by NASA 

Langley Research Center. This gripper was made for the PUMA but 

was supplied without a controller. A modest effort was applied 
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to interfacing this gripper to the robot, but our main thrust was 

to concentrate on completing the force-torque sensor system. 
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CONCLUBIONS 

We have developed a technology for ultrasonically-based 

force-torque sensors capable of being mounted on the gripping 

surfaces of parallel-jaw end-effectors. The current prototype is 

about one-inch in diameter; however, a miniaturized sensor 3/8- 

inch in diameter has been constructed and indications are that 

this small size will be feasible. Further size reduction is 

possible but has not been attempted. 

A unique feature of this technology is that the  spring 

member (i.e. rubber ring) can be chosen to suit the application 

without affecting sensor design. In fact, sensors could be 

assembled (and tested) to the stage where the ring would be 

bonded to the PVDF and placed in inventory. Then, when an order 

is received for a sensor with a specific sensitivity, force- 

torque range, and environmental exposure, the ring having the 

appropriate rubber type and formulation can be selected and 

sensor fabrication completed. 

The on- or near-sensor electronics is complete. The large, 

constant-shape echoes (compared to signals from the tactile 

sensor) are relatively noise-free and easily detected. Conse- 

quently, the existing circuitry can be simplified, with a 

concomitant reduction in cost. The currently used schemes for 

time-of-flight measurement (clock-pulse counting) provide rather 

coarse time resolution and, therefore, limit force-torque 

\ resolution. Alternative schemes are being reviewed. 
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The 68000 microcomputer is ready and waiting for force- 

torque data from the sensor. Programs are in place for sensor 

control, data acceptance, solution of force-torque equations, and 

display of force-torque values. We are currently working on 

completing the electronic link from the sensor to the computer. 

Once this is established operational evaluation of the sensor can 

take place and key issues of sensor accuracy and useful resolu- 

tion addressed- 

* 

131 


